Publications by authors named "R Eisert"

Article Synopsis
  • Current treatments for advanced prostate cancer mainly focus on androgen receptor pathways, but issues like castration-resistant prostate cancer (CRPC) pose significant challenges.
  • The study introduces BSJ-5-63, a new triple degrader that targets specific cyclin-dependent kinases (CDK12, CDK7, CDK9) to reduce both DNA repair genes and androgen receptor signaling, enhancing treatment efficacy.
  • BSJ-5-63 creates a lasting "BRCAness" state, allowing for effective sequential therapy with PARP inhibitors while reducing drug-related side effects and resistance, potentially benefiting a wide range of CRPC patients.
View Article and Find Full Text PDF

Neuroinflammation is a pathological feature of many neurodegenerative diseases, including Alzheimer's disease (AD) and amyotrophic lateral sclerosis (ALS), raising the possibility of common therapeutic targets. We previously established that cytoplasmic double-stranded RNA (cdsRNA) is spatially coincident with cytoplasmic pTDP-43 inclusions in neurons of patients with C9ORF72-mediated ALS. CdsRNA triggers a type-I interferon (IFN-I)-based innate immune response in human neural cells, resulting in their death.

View Article and Find Full Text PDF

The B cell receptor (BCR) signals together with a multi-component co-receptor complex to initiate B cell activation in response to antigen binding. Here, we take advantage of peroxidase-catalyzed proximity labeling combined with quantitative mass spectrometry to track co-receptor signaling dynamics in Raji cells from 10 s to 2 h after BCR stimulation. This approach enables tracking of 2,814 proximity-labeled proteins and 1,394 phosphosites and provides an unbiased and quantitative molecular map of proteins recruited to the vicinity of CD19, the signaling subunit of the co-receptor complex.

View Article and Find Full Text PDF

TRPV2 voltage-insensitive, calcium-permeable ion channels play important roles in cancer progression, immune response, and neuronal development. Despite TRPV2's physiological impact, underlying endogenous proteins mediating TRPV2 responses and affected signaling pathways remain elusive. Using quantitative peroxidase-catalyzed (APEX2) proximity proteomics we uncover dynamic changes in the TRPV2-proximal proteome and identify calcium signaling and cell adhesion factors recruited to the molecular channel neighborhood in response to activation.

View Article and Find Full Text PDF

Hydroxyproline-rich glycoproteins (HRGPs) are a ubiquitous class of protein in the extracellular matrices and cell walls of plants and algae, yet little is known of their native structures or interactions. Here, we used electron cryomicroscopy (cryo-EM) to determine the structure of the hydroxyproline-rich mastigoneme, an extracellular filament isolated from the cilia of the alga Chlamydomonas reinhardtii. The structure demonstrates that mastigonemes are formed from two HRGPs (a filament of MST1 wrapped around a single copy of MST3) that both have hyperglycosylated poly(hydroxyproline) helices.

View Article and Find Full Text PDF