Background: There is a growing interest in self-collection of blood for clinical applications. Next to allowing patients to self-sample blood, adequate sample stability of the analyte is essential to provide an accurate and reliable test result. This is particularly important for self-collected blood, as the transport of the sample to the clinical laboratory will generally require significantly more time than routine blood samples collected by healthcare professionals, and under less controlled circumstances.
View Article and Find Full Text PDFIdentifying controls on soil organic carbon (SOC) storage, and where SOC is most vulnerable to loss, are essential to managing soils for both climate change mitigation and global food security. However, we currently lack a comprehensive understanding of the global drivers of SOC storage, especially with regards to particulate (POC) and mineral-associated organic carbon (MAOC). To better understand hierarchical controls on POC and MAOC, we applied path analyses to SOC fractions, climate (i.
View Article and Find Full Text PDFObjectives: Self-collection of blood for diagnostic purposes by blood collection assist devices (BCAD) has gained a lot of momentum. Nonetheless, there are a lack of studies demonstrating the feasibility and reliability of self-collecting capillary blood for routine (immuno)chemistry testing. In this study we describe the topper technology together with pediatric tubes to enable self-collection of blood and investigated its feasibility for PSA testing by prostate cancer patients.
View Article and Find Full Text PDFWe report an approach to waterborne and degradable latex polymers. Emulsion polymerization of vinyl acetate (VA) with the cyclic ketene acetal 2-methylene-1,3-dioxepane (MDO) yields polymer particles and latex-based coatings that are hydrolytically degradable due to the presence of backbone ester groups. Polymerization under mildly basic conditions (pH 8) and at low temperature (40 °C) is critical: if the in-process pH is too acidic or the temperature too high, MDO is lost to hydrolysis, but when the media is too alkaline, VA monomer rapidly hydrolyzes.
View Article and Find Full Text PDFAngiogenesis and lymphangiogenesis are key processes during embryogenesis as well as under physiological and pathological conditions. Vascular endothelial growth factor C (VEGFC), the ligand for both VEGFR2 and VEGFR3, is a central lymphangiogenic regulator that also drives angiogenesis. Here, we report that members of the highly conserved BACH (BTB and CNC homology) family of transcription factors regulate VEGFC expression, through direct binding to its promoter.
View Article and Find Full Text PDF