Publications by authors named "R EICH"

Globins play a key role in regulating nitric oxide (NO) levels in all forms of life. Five key reactions of NO with mammalian muscle myoglobin (Mb) and red blood cell hemoglobin (Hb) have been examined: (1) reversible NO binding to Fe(II) forms; (2) reversible NO binding to Fe(III) forms; (3) NO dioxygenation by Fe(II)O complexes; (4) autoxidation of Fe(II)NO complexes in the presence of O; and (5) autoreduction of Fe(III)NO complexes. NO reacts rapidly and almost irreversibly with deoxyMb(FeII) in the absence of O, whereas it reacts much more slowly and weakly with metMb(FeIII).

View Article and Find Full Text PDF

Ambulatory (outpatient) healthcare organizations continue to respond to the COVID-19 global pandemic using an array of initiatives to sustain a continuity of palliative care. Continuance of palliative care during major crises has been previously accomplished; however, the global pandemic presents new challenges to the US healthcare industry. This systematic review queried four research databases to identify applicable studies related to the provision of palliative care during the pandemic in outpatient organizations within the United States.

View Article and Find Full Text PDF

The ligand binding properties and resistances to denaturation of >300 different site-directed mutants of sperm whale, pig, and human myoglobin have been examined over the past 15 years. This library of recombinant proteins has been used to derive chemical mechanisms for ligand binding and to examine the factors governing holo- and apoglobin stability. We have also examined the effects of mutagenesis on the dioxygenation of NO by MbO(2) to form NO(3)(-) and metMb.

View Article and Find Full Text PDF

The glbN gene of the cyanobacterium Nostoc commune UTEX 584 encodes a hemoprotein, named cyanoglobin, that has high oxygen affinity. The basis for the high oxygen affinity of cyanoglobin was investigated through kinetic studies that utilized stopped-flow spectrophotometry and flash photolysis. Association and dissociation rate constants were measured at 20 degrees C for oxygen, carbon monoxide, nitric oxide, and methyl and ethyl isocyanides.

View Article and Find Full Text PDF