Publications by authors named "R E WEHR"

Article Synopsis
  • Wetlands produce a lot of methane (a type of gas), but scientists don't fully understand how the tiny organisms in these areas work, which makes it hard to know how much methane will be released as the climate changes.
  • Researchers studied a special wetland in Sweden called Stordalen Mire and discovered that many microbes there can create methane using different sources, like certain chemicals found in the water.
  • This study shows that both methane-producing and methane-using bacteria are important for understanding how gases are emitted from wetlands, especially as permafrost (frozen ground) thaws due to climate change.
View Article and Find Full Text PDF

Territorial Differential Meta-Evolution (TDME) is an efficient, versatile, and reliable algorithm for seeking all the global or desirable local optima of a multivariable function. It employs a progressive niching mechanism to optimize even challenging, high-dimensional functions with multiple global optima and misleading local optima. This paper introduces TDME and uses standard and novel benchmark problems to quantify its advantages over HillVallEA, which is the best-performing algorithm on the standard benchmark suite that has been used by all major multimodal optimization competitions since 2013.

View Article and Find Full Text PDF

Rationale: The simultaneous analysis of the three stable isotopes of oxygen-triple oxygen isotope analysis-has become an important analytical technique in natural sciences. Determination of the abundance of the rare O isotope in CO gas using magnetic sector isotope ratio mass spectrometry is complicated by the isobaric interference of O by C ( C O O and C O O, both have mass 45 amu). A number of analytical techniques have been used to measure the O/ O ratio of CO gas.

View Article and Find Full Text PDF

Combining amphiphilic block copolymers and phospholipids opens new opportunities for the preparation of artificial membranes. The chemical versatility and mechanical robustness of polymers together with the fluidity and biocompatibility of lipids afford hybrid membranes with unique properties that are of great interest in the field of bioengineering. Owing to its straightforwardness, the solvent-assisted method (SA) is particularly attractive for obtaining solid-supported membranes.

View Article and Find Full Text PDF