We tested the efficacy of matrix-based fertilizers (MBFs) to reduce Escherichia coli and Enterococcus spp., NH(4), NO(3), dissolved reactive phosphorus (DRP), and total phosphorus (TP) in leachate and soil after dairy manure application in greenhouse column studies. The MBFs are composed of inorganic N and P in compounds that are relatively loosely bound (MBF8) to more tightly bound (MBF9) mixtures using combinations of starch, cellulose, lignin, Al(2)(SO(4))(3)18H(2)O, and/or Fe(2)(SO(4))(3)3H(2)O to create a matrix that slowly releases the nutrients.
View Article and Find Full Text PDFJ Environ Manage
May 2008
We compared the efficacy of matrix based fertilizers (MBFs) formulated to reduce NO3-, NH4+, and total phosphorus (TP) leaching, with Osmocoate 14-14-14, a conventional commercial slow release fertilizer (SRF) and an unamended control in three different soil textures in a greenhouse column study. The MBFs covered a range of inorganic N and P in compounds that are relatively loosely bound (MBF 1) to more moderately bound (MBF 2) and more tightly bound compounds (MBF 3) mixed with Al(SO4)3H2O and/or Fe2(SO4)3 and with high ionic exchange compounds starch, chitosan and lignin. When N and P are released, the chemicals containing these nutrients in the MBF bind N and P to a Al(SO4)3H2O and/or Fe2(SO4)3 starch-chitosan-lignin matrix.
View Article and Find Full Text PDFLow concentrations of synthetic- or bio-polymers in irrigation water can nearly eliminate sediment, N, ortho- and total-P, DOM, pesticides, micro-organisms, and weed seed from runoff. These environmentally safe polymers are employed in various sensitive uses including food processing, animal feeds, and potable water purification. The most common synthetic polymer is anionic, high purity polyacrylamide (PAM), which typically provides 70-90% contaminant elimination.
View Article and Find Full Text PDFPolyacrylamide (PAM) use in irrigation for erosion control has increased water infiltration and reduced soil erosion. This has improved runoff water quality via lower concentrations of nitrogen, phosphorous, and pesticides, and decreased biological oxygen demand. Since non-toxic high molecular weight anionic PAMs removed clay size sediment particles in flowing water, we hypothesized that PAM would effectively remove or immobilize microorganisms in flowing water.
View Article and Find Full Text PDFAnimal wastes are a major contributor of nutrients and enteric microorganisms to surface water and ground water. Polyacrylamide (PAM) mixtures are an effective flocculent, and we hypothesized that they would reduce transport of microorganisms in flowing water. After waste water running at 60.
View Article and Find Full Text PDF