Background: Nonsteroidal agonists have been developed that selectively bind to and activate estrogen receptor beta (ERbeta) rather than estrogen receptor alpha (ERalpha). ERbeta is expressed equally in both male and female mammals in multiple extragonadal tissues. Work reported elsewhere has demonstrated that ERbeta agonists have beneficial effects in multiple (but not all) models of inflammatory diseases and also increase survival in experimentally induced sepsis.
View Article and Find Full Text PDFBased on the previously reported discovery lead, 3-(cis-4-(4-(1H-indol-4-yl)piperazin-1-yl)cyclohexyl)-5-fluoro-1H-indole (2), a series of related arylpiperazin-4-yl-cyclohexyl indole analogs were synthesized then evaluated as 5-HT transporter inhibitors and 5-HT(1A) receptor antagonists. The investigation of the structure-activity relationships revealed the optimal pharmacophoric elements required for activities in this series. The best example from this study, 5-(piperazin-1-yl)quinoline analog (trans-20), exhibited equal binding affinities at 5-HT transporter (K(i)=4.
View Article and Find Full Text PDFA new class of estrogen receptor beta (ERbeta) ligands based on the 6H-chromeno[4,3-b]quinoline scaffold has been prepared. Several C7-substituted analogues displayed high affinity and modest selectivity for ERbeta.
View Article and Find Full Text PDFA series of 4'-hydroxyphenyl-aryl-carbaldehyde oximes (5b) was prepared and found to have high affinity (4nM) and modest selectivity (39-fold) for estrogen receptor-beta (ERbeta). Substitution of one of the core rings of the scaffold based around these novel ligands further expanded our knowledge in the quest toward achieving high affinity and selectivity for ERbeta. An X-ray co-crystal of structure 11 revealed that the oxime moiety was mimicking the C-ring of genistein, as previously predicted by SAR and docking studies.
View Article and Find Full Text PDF