Publications by authors named "R E McMurtrie"

Understanding how plant water uptake interacts with acquisition of soil nitrogen (N) and other nutrients is fundamental for predicting plant responses to a changing environment, but it is an area where models disagree. We present a novel isotopic labelling approach which reveals spatial patterns of water and N uptake, and their interaction, by trees. The stable isotopes N and H were applied to a small area of the forest floor in stands with high and low soil N availability.

View Article and Find Full Text PDF

The classic model of nitrogen (N) flux into roots is as a Michaelis-Menten (MM) function of soil-N concentration at root surfaces. Furthermore, soil-N transport processes that determine soil-N concentration at root surfaces are seen as a bottleneck for plant nutrition. Yet, neither the MM relationship nor soil-N transport mechanisms are represented in current terrestrial biosphere models.

View Article and Find Full Text PDF

Purpose/objectives: A report of clinical outcomes of a computed tomography (CT)-based image guided brachytherapy (IGBT) technique for treatment of cervical cancer.

Methods And Materials: Seventy-six women with International Federation of Gynecology and Obstetrics stage IB to IVA cervical carcinoma diagnosed between 2007 and 2014 were treated with definitive external beam radiation therapy (EBRT) with or without concurrent chemotherapy followed by high-dose-rate (HDR) IGBT. All patients underwent planning CT simulation at each implantation.

View Article and Find Full Text PDF

Allocation of carbon (C) between tree components (leaves, fine roots and woody structures) is an important determinant of terrestrial C sequestration. Yet, because the mechanisms underlying C allocation are poorly understood, it is a weak link in current earth-system models. We obtain new theoretical insights into C allocation from the hypothesis (MaxW) that annual wood production is maximized.

View Article and Find Full Text PDF

CO(2)-enrichment experiments consistently show that rooting depth increases when trees are grown at elevated CO(2) (eCO(2)), leading in some experiments to increased capture of available soil nitrogen (N) from deeper soil. However, the link between N uptake and root distributions remains poorly represented in forest ecosystem and global land-surface models. Here, this link is modeled and analyzed using a new optimization hypothesis (MaxNup) for root foraging in relation to the spatial variability of soil N, according to which a given total root mass is distributed vertically in order to maximize annual N uptake.

View Article and Find Full Text PDF