Equal cell division relies upon astral microtubule-based centering mechanisms, yet how the interplay between mitotic entry, cortical force generation and long astral microtubules leads to symmetric cell division is not resolved. We report that a cortically located sperm aster displaying long astral microtubules that penetrate the whole zygote does not undergo centration until mitotic entry. At mitotic entry, we find that microtubule-based cortical pulling is lost.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
March 2024
Endocrine-disrupting chemicals (EDCs) represent a global threat to human health and the environment. In vertebrates, lipophilic EDCs primarily act by mimicking endogenous hormones, thus interfering with the transcriptional activity of nuclear receptors (NRs). The demonstration of the direct translation of these mechanisms into perturbation of NR-mediated physiological functions in invertebrates, however, has rarely proven successful, as the modes of action of EDCs in vertebrates and invertebrates seem to be distinct.
View Article and Find Full Text PDFA model organism in developmental biology is defined by its experimental amenability and by resources created for the model system by the scientific community. For the most powerful invertebrate models, the combination of both has already yielded a thorough understanding of developmental processes. However, the number of developmental model systems is still limited, and their phylogenetic distribution heavily biased.
View Article and Find Full Text PDFTissue morphogenesis results from a tight interplay between gene expression, biochemical signaling and mechanics. Although sequencing methods allow the generation of cell-resolved spatiotemporal maps of gene expression, creating similar maps of cell mechanics in three-dimensional (3D) developing tissues has remained a real challenge. Exploiting the foam-like arrangement of cells, we propose a robust end-to-end computational method called 'foambryo' to infer spatiotemporal atlases of cellular forces from fluorescence microscopy images of cell membranes.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
October 2023
The broadly utilized biocide triclosan (TCS) is continuously discharged in water compartments worldwide, where it is detected at concentrations of ng-µg/L. Given its lipophilicity and bioaccumulation, TCS is considered potentially harmful to human and environmental health and also as a potential endocrine disruptor (ED) in different species. In aquatic organisms, TCS can induce a variety of effects: however, little information is available on its possible impact on invertebrate development.
View Article and Find Full Text PDF