Background: Some patients with melanoma experience disease progression during immunotherapy (IO) and may benefit from novel combinations of immune checkpoint inhibitors (ICIs). We report results from exploratory biomarker analyses to characterize the responses of patients with advanced melanoma to treatment with nivolumab (anti-programmed cell death-1 (PD-1)) and relatlimab (anti-lymphocyte-activation gene 3 (LAG-3)) combination therapy in RELATIVITY-020 (NCT01968109).
Methods: Tumor biopsies collected at baseline and ≤4 weeks after treatment initiation were evaluated for % LAG-3-positive and % CD8-positive immune cells and % programmed death-ligand 1 (PD-L1) expression on tumor cells.
In cutaneous melanoma, epigenetic dysregulation is implicated in drug resistance and tumor immune escape. However, the epigenetic mechanisms that influence immune escape remain poorly understood. To elucidate how epigenetic dysregulation alters the expression of surface proteins that may be involved in drug targeting and immune escape, we performed a 3-dimensional surfaceome screen in primary melanoma cultures and identified the DNA-methyltransferase inhibitor decitabine as significantly upregulating the costimulatory molecule ICAM-1.
View Article and Find Full Text PDFNeoadjuvant immunotherapies have shown antitumor activity in melanoma. Substudy 02C of the global, rolling-arm, phase 1/2, adaptive-design KEYMAKER-U02 trial is evaluating neoadjuvant pembrolizumab (anti-PD-1) alone or in combination, followed by adjuvant pembrolizumab, for stage IIIB-D melanoma. Here we report results from the first three arms: pembrolizumab plus vibostolimab (anti-TIGIT), pembrolizumab plus gebasaxturev (coxsackievirus A21) and pembrolizumab monotherapy.
View Article and Find Full Text PDF