Background: Pseudomonas syringae is pathogenic to a large number of plant species. For host colonization and disease progression, strains of this bacterium utilize an array of type III-secreted effectors and other virulence factors, including small secreted molecules such as syringolin A, a peptide derivative that inhibits the eukaryotic proteasome. In strains colonizing dicotyledonous plants, the compound was demonstrated to suppress the salicylic-acid-dependent defense pathway.
View Article and Find Full Text PDFThe Pseudomonas syringae species complex has recently been named the number one plant pathogen, due to its economic and environmental impacts, as well as for its role in scientific research. The bacterium has been repeatedly reported to cause outbreaks on bean, cucumber, stone fruit, kiwi and olive tree, as well as on other crop and non-crop plants. It also serves as a model organism for research on the Type III secretion system (T3SS) and plant-pathogen interactions.
View Article and Find Full Text PDFAs proteins are the main effectors inside cells, their levels need to be tightly regulated. This is partly achieved by specific protein degradation via the Ubiquitin-26S proteasome system (UPS). In plants, an exceptionally high number of proteins are involved in Ubiquitin-26S proteasome system-mediated protein degradation and it is known to regulate most, if not all, important cellular processes.
View Article and Find Full Text PDFAppl Environ Microbiol
June 2014
Syringolin A, the product of a mixed nonribosomal peptide synthetase/polyketide synthase encoded by the syl gene cluster, is a virulence factor secreted by certain Pseudomonas syringae strains. Together with the glidobactins produced by a number of beta- and gammaproteobacterial human and animal pathogens, it belongs to the syrbactins, a structurally novel class of proteasome inhibitors. In plants, proteasome inhibition by syringolin A-producing P.
View Article and Find Full Text PDFGenome Announc
April 2014
Strains of the plant pathogen Pseudomonas syringae are commonly found in the phylosphere and are able to infect a number of agriculturally important crops. Here, we report a high-quality draft genome sequence of Pseudomonas syringae pv. syringae B301D-R, isolated from pears, which is a model strain for phytotoxin research in P.
View Article and Find Full Text PDF