Background: Our previous studies have established that the broad-spectrum anti-epileptic drug lamotrigine (LTG) confers protection against cognitive impairments, synapse and nerve cell damage, as well as characteristic neuropathologies in APP/PS1 mice, a mouse model of Alzheimer's disease (AD). However, the precise molecular mechanisms responsible for this protective effect induced by LTG remain largely elusive.
Objective: In this study, we aimed to investigate the mechanisms underlying the beneficial effects of LTG against AD.
The growing availability of pre-trained polygenic risk score (PRS) models has enabled their integration into real-world applications, reducing the need for extensive data labeling, training, and calibration. However, selecting the most suitable PRS model for a specific target population remains challenging, due to issues such as limited transferability, data het-erogeneity, and the scarcity of observed phenotype in real-world settings. Ensemble learning offers a promising avenue to enhance the predictive accuracy of genetic risk assessments, but most existing methods often rely on observed phenotype data or additional genome-wide association studies (GWAS) from the target population to optimize ensemble weights, limiting their utility in real-time implementation.
View Article and Find Full Text PDFMalania oleifera Chun et S.K. Lee is a woody oil tree species and is rich in nervonic acid, which is associated with brain development.
View Article and Find Full Text PDFActive learning on graphs (ALG) has emerged as a compelling research field due to its capacity to address the challenge of label scarcity. Existing ALG methods incorporate diversity into their query strategies to maximize the gains from node sampling, improving robustness and reducing redundancy in graph learning. However, they often overlook the complex entanglement of latent factors inherent in graph-structured data.
View Article and Find Full Text PDFPurpose: This study aimed to investigate the pathological responses of glial cells at different distances from amyloid plaques and the characteristics of oligodendrocyte precursor cells (OPCs) in perivascular clustering. Additionally, it sought to explore the impact of exercise training on AD pathology, specifically focusing on the modulation of glial responses and the effects of OPC perivascular clustering.
Methods: Three-month-old C57BL/6 and APP/PS1 mice were divided into four groups: wild-type sedentary, wild-type exercise, sedentary AD, and exercise AD groups.