Stable Sb exhibits a rhombohedral structure, often referred to as distorted primitive cubic, with each Sb atom having three short and three longer first neighbor bonds. However, this crystal structure can also be interpreted as being layered, putting emphasis on only three short first neighbor bonds. Therefore, temperature-dependent extended X-ray absorption fine structure (EXAFS) spectroscopy is carried out at the Sb K-edge in order to obtain more detailed information on local structural and vibrational properties.
View Article and Find Full Text PDFDue to electronegativity (EN) differences, changing from CN to PC is not as trivial as simply replacing nitrogen by phosphorus in the CN structure. Hence, the nonexistent PC phase is nominally the higher-homologue analogue of the well-known CN, but its structure and properties are practically unknown for fundamental reasons. Here we predict, by means of an extensive structure search, three energetically favorable yet metastable PC phases adopting space groups 1̅, , and , followed by designing their synthetic routes.
View Article and Find Full Text PDFLiMnHf(NCN) and LiMnZr(NCN) were prepared solid-state metathesis reactions either a more exothermic direct reaction between LiNCN, MnCl and HfCl or a milder two-step reaction in which ternary LiZr(NCN) was first prepared and subsequently reacted with MnF. Their crystal structures were determined from powder X-ray diffraction data and found to crystallize isotypically in low-symmetry variants of the [NiAs]-type MNCN structure with 3̄1 symmetry and comprise corundum-like [(NCN)] layers ( = Hf, Zr) alternating with [LiMn(NCN)] layers. In-depth chemical bonding analysis was undertaken using LOBSTER to calculate the Löwdin charges which reveal significant differences in covalency between the two metal layers that is also reflected in the crystal orbital bond indices (COBI) of the metal-nitrogen bonds as well as the carbon-nitrogen bonds that show distinct single and triple bond character, which is also evident from infrared spectroscopy measurements.
View Article and Find Full Text PDFAn entire series of mercury cyanamides/carbodiimides, including two new materials─Hg(NCN)Cl (, = 4, = 9.109(1) Å, = 15.386(1) Å, = 8.
View Article and Find Full Text PDFHigh-pressure neutron powder diffraction data from PbNCN were collected on the high-pressure diffraction beamline SNAP located at the Spallation Neutron Source (SNS) of Oak Ridge National Laboratory (Tennessee, USA). The diffraction data were analyzed using the novel method of multidimensional (two dimensions for now, potentially more in the future) Rietveld refinement and, for comparison, employing the conventional Rietveld method. To achieve two-dimensional analysis, a detailed description of the SNAP instrument characteristics was created, serving as an instrument parameter file, and then yielding both cell and spatial parameters as refined under pressure for the first time for solid-state cyanamides/carbodi-imides.
View Article and Find Full Text PDF