Although three-dimensional shaping of metallic nanostructures is an important strategy for control and manipulation of localized surface plasmon resonance (LSPR), its implementation in high-throughput, on-chip fabrication of plasmonic devices remains challenging. Here, we demonstrate nanocontact-based large-area fabrication of a novel, LSPR-active Au architecture consisting of periodic arrays of reduced-symmetry nanoantennas having sub-50 nm, out-of-plane features. Namely, by combining nanosphere and molecular self-assembly processes, we have patterned evaporated polycrystalline Au films for chemical etching of nanocups with controlled aspect ratios (outer diameter d = 100 nm and void volumes = 18 or 39 zL).
View Article and Find Full Text PDFWe compare a femtosecond laser induced modification in silica matrices with three different degrees of porosity. In single pulse regime, the decrease of substrate density from fused silica to high-silica porous glass and to silica aerogel glass results in tenfold increase of laser affected region with the formation of a symmetric cavity surrounded by the compressed silica shell with pearl like structures. In multi-pulse regime, if the cavity produced by the first pulse is relatively large, the subsequent pulses do not cause further modifications.
View Article and Find Full Text PDFWe studied a femtosecond laser shaping of silver nanoparticles embedded in soda-lime glass. Comparing experimental absorption spectra with the modeling based on Maxwell Garnett approximation modified for spheroidal inclusions, we obtained the mean aspect ratio of the re-shaped silver nanoparticles as a function of the laser fluence. We demonstrated that under our experimental conditions the spherical shape of silver nanoparticles changed to a prolate spheroid with the aspect ratio as high as 3.
View Article and Find Full Text PDFSurface texturing is demonstrated by the combination of wet etching and ultrafast laser nanostructuring of silica glass. Using potassium hydroxide (KOH) at room temperature as an etchant of laser modified glass, we show the polarization dependent linear increase in retardance reaching a threefold value within 25 hours. The dispersion control of birefringence by the etching procedure led to achromatic behaviour over the entire visible spectral range.
View Article and Find Full Text PDF