Iron is a critical nutrient for all organisms ranging from bacteria to humans. Ensuring control of this strategic vital resource significantly influences the dynamics of the struggle between host and invading pathogen. Mycobacterium tuberculosis (Mtb), the causative agent of the pulmonary disease tuberculosis (TB), has been plaguing humans for millennia and has evolved to successfully persist and multiply within host cells evading the mammalian immune defences.
View Article and Find Full Text PDFDiabetes mellitus (DM) is a major risk factor for tuberculosis (TB), though the underlying mechanisms linking DM and TB remain ambiguous. Macrophages are a key player in the innate immune response and their phagocytic ability is enhanced in response to microbial infections. Upon infection or inflammation, they also repel invading pathogens by generating; reactive oxygen species (ROS), reactive nitrogen species (RNS), pro-inflammatory cytokines (IL-1β and IL-6), and anti-inflammatory cytokines (IL-10).
View Article and Find Full Text PDFIntroduction: Coronavirus disease 2019 caused by coronavirus-2 (SARS-CoV-2) has emerged as an aggressive viral pandemic. Health care providers confront a challenging task for rapid development of effective strategies to combat this and its long-term after effects. Virus entry into host cells involves interaction between receptor-binding domain (RBD) of spike (S) protein S1 subunit with angiotensin converting enzyme present on host cells.
View Article and Find Full Text PDFThe development of strategies for targeting the asymptomatic carriage of Typhi in chronic typhoid patients has suffered owing to our basic lack of understanding of the molecular mechanisms that enable the formation of . Typhi biofilms. Traditionally, studies have relied on cholesterol-attached biofilms formed by a closely related serovar, Typhimurium, to mimic multicellular Typhi communities formed on human gallstones.
View Article and Find Full Text PDFCoronavirus disease-19 (COVID-19) can induce severe inflammation of the lungs and respiratory system. Severe COVID-19 is frequently associated with hyper inflammation and hyper-ferritinemia. High iron levels are known to trigger pro-inflammatory effects.
View Article and Find Full Text PDF