TBI occurs when sudden trauma to the head causes damage to the brain, leading to long-term health problems. Many features of TBI can be replicated in , making them an ideal model. Previous research on male flies showed that TBI decreases lifespan and locomotion, both of which were ameliorated by dietary restriction (DR).
View Article and Find Full Text PDFInhibitors of enzymes that inactivate amine neurotransmitters (dopamine, serotonin), such as catechol-O-methyltransferase (COMT) and monoamine oxidase (MAO), are thought to increase neurotransmitter levels and are widely used to treat Parkinson's disease and psychiatric disorders, yet the role of these enzymes in regulating behavior remains unclear. Here, we investigated the genetic loss of a similar enzyme in the model organism Drosophila melanogaster. Because the enzyme Ebony modifies and inactivates amine neurotransmitters, its loss is assumed to increase neurotransmitter levels, increasing behaviors such as aggression and courtship and decreasing sleep.
View Article and Find Full Text PDFTemperatures outside the preferred range require flies to acutely adjust their behavior. A new study finds that heat-sensing neurons provide input to fly circadian clock neurons to extend the daytime siesta, allowing flies to sleep through excessive daytime heat.
View Article and Find Full Text PDFTraumatic brain injury (TBI) affects millions annually and is associated with long-term health decline. TBI also shares molecular and cellular hallmarks with neurodegenerative diseases (NDs), typically increasing in prevalence with age, and is a major risk factor for developing neurodegeneration later in life. While our understanding of genes and pathways that underlie neurotoxicity in specific NDs has advanced, we still lack a complete understanding of early molecular and physiological changes that drive neurodegeneration, particularly as an individual ages following a TBI.
View Article and Find Full Text PDFBecause old age is associated with defects in circadian rhythm, loss of circadian regulation is thought to be pathogenic and contribute to mortality. We show instead that loss of specific circadian clock components Period (Per) and Timeless (Tim) in male Drosophila significantly extends lifespan. This lifespan extension is not mediated by canonical diet-restriction longevity pathways but is due to altered cellular respiration via increased mitochondrial uncoupling.
View Article and Find Full Text PDF