Publications by authors named "R Delsite"

Purpose: Homologous recombination deficient (HRD) tumors are exquisitely sensitive to platinum-based chemotherapy and when combined with radiation therapy (RT), leads to improved overall survival in multiple cancer types. Whether a subset of tumors with distinct molecular characteristics demonstrate increased benefit from cisplatin and RT (c-RT) is unclear. We hypothesized that HRD tumors, whether associated with BRCA mutations or genomic scars of HRD, exhibit exquisite sensitivity to c-RT, and that HRD may be a significant driver of c-RT benefit.

View Article and Find Full Text PDF

Homologous recombination (HR) DNA repair-deficient (HRD) breast cancers have been shown to be sensitive to DNA repair targeted therapies. Burgeoning evidence suggests that sporadic breast cancers, lacking germline BRCA1/BRCA2 mutations, may also be HRD. We developed a functional ex vivo RAD51-based test to identify HRD primary breast cancers.

View Article and Find Full Text PDF

Most cancer therapies involve a component of treatment that inflicts DNA damage in tumor cells, such as double-strand breaks (DSBs), which are considered the most serious threat to genomic integrity. Complex systems have evolved to repair these lesions, and successful DSB repair is essential for tumor cell survival after exposure to ionizing radiation (IR) and other DNA-damaging agents. As such, inhibition of DNA repair is a potentially efficacious strategy for chemo- and radiosensitization.

View Article and Find Full Text PDF

Tumors often have DNA repair defects, suggesting additional inhibition of other DNA repair pathways in tumors may lead to synthetic lethality. Accumulating data demonstrate that DNA repair-defective tumors, in particular homologous recombination (HR), are highly sensitive to DNA-damaging agents. Thus, HR-defective tumors exhibit potential vulnerability to the synthetic lethality approach, which may lead to new therapeutic strategies.

View Article and Find Full Text PDF

Malignant pleural mesotheliomas (MPMs) often show CDKN2A and NF2 inactivation, but other highly recurrent mutations have not been described. To identify additional driver genes, we used an integrated genomic analysis of 53 MPM tumor samples to guide a focused sequencing effort that uncovered somatic inactivating mutations in BAP1 in 23% of MPMs. The BAP1 nuclear deubiquitinase is known to target histones (together with ASXL1 as a Polycomb repressor subunit) and the HCF1 transcriptional co-factor, and we show that BAP1 knockdown in MPM cell lines affects E2F and Polycomb target genes.

View Article and Find Full Text PDF