We present first hard X-ray photoelectron spectroscopy (HAXPES) results of aqueous salt solutions and dispersions of gold nanoparticles in liquid cells equipped with specially designed microfabricated thin silicon nitride membranes, with thickness in the 15-25 nm range, mounted in a high-vacuum-compatible environment. The experiments have been performed at the HAXPES endstation of the GALAXIES beamline at the SOLEIL synchrotron radiation facility. The low-stress membranes are fabricated from 100 mm silicon wafers using standard lithography techniques.
View Article and Find Full Text PDFReversible anionic redox reactions represent a transformational change for creating advanced high-energy-density positive-electrode materials for lithium-ion batteries. The activation mechanism of these reactions is frequently linked to ligand-to-metal charge transfer (LMCT) processes, which have not been fully validated experimentally due to the lack of suitable model materials. Here we show that the activation of anionic redox in cation-disordered rock-salt LiTiNiO involves a long-lived intermediate Ni species, which can fully evolve to Ni during relaxation.
View Article and Find Full Text PDFAnionic redox is a double-edged sword for Li-ion cathodes because it offers a transformational increase in energy density that is also negated by several detrimental drawbacks to its practical implementation. Among them, voltage hysteresis is the most troublesome because its origin is still unclear and under debate. Herein, we tackle this issue by designing a prototypical Li-rich cation-disordered rock-salt compound LiTiFeO that shows anionic redox activity and exceptionally large voltage hysteresis while exhibiting a partially reversible Fe migration between octahedral and tetrahedral sites.
View Article and Find Full Text PDFExpanding the chemical space for designing novel anionic redox materials from oxides to sulfides has enabled to better apprehend fundamental aspects dealing with cationic-anionic relative band positioning. Pursuing with chalcogenides, but deviating from cationic substitution, we here present another twist to our band positioning strategy that relies on mixed ligands with the synthesis of the LiTiSSe solid solution series. Through the series the electrochemical activity displays a bell shape variation that peaks at 260 mAh/g for the composition x = 0.
View Article and Find Full Text PDFSodium ion batteries, because of their sustainability attributes, could be an attractive alternative to Li-ion technology for specific applications. However, it remains challenging to design high energy density and moisture stable Na-based positive electrodes. Here, we report an O3-type NaLiMnO phase showing anionic redox activity, obtained through a ceramic process by carefully adjusting synthesis conditions and stoichiometry.
View Article and Find Full Text PDF