Radiat Prot Dosimetry
December 2006
The objective of the Third International Intercomparison on EPR Tooth Dosimetry was to evaluate laboratories performing tooth enamel dosimetry <300 mGy. Final analysis of results included a correlation analysis between features of laboratory dose reconstruction protocols and dosimetry performance. Applicability of electron paramagnetic resonance (EPR) tooth dosimetry at low dose was shown at two applied dose levels of 79 and 176 mGy.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
October 2005
Electron paramagnetic resonance (EPR) is often used in dosimetry using biological samples such as teeth and bones. It is generally assumed that the radicals, formed after irradiation, are similar in both tissues as the mineral part of bone and tooth is carbonated hydroxyapatite. However, there is a lack of experimental evidence to support this assumption.
View Article and Find Full Text PDFAppl Radiat Isot
February 2005
The objective of the 3rd International Intercomparison on Electron Paramagnetic Resonance (EPR) Tooth Dosimetry was the evaluation of laboratories performing tooth enamel dosimetry below 300 mGy. Participants had to reconstruct the absorbed dose in tooth enamel from 11 molars, which were cut into two halves. One half of each tooth was irradiated in a 60Co beam to doses in the ranges of 30-100 mGy (5 samples), 100-300 mGy (5 samples), and 300-900 mGy (1 sample).
View Article and Find Full Text PDFThe purpose of this study was to provide insight into the processes that occur after the irradiation of solid-state drugs. Electron paramagnetic resonance (EPR) experiments were performed at two different frequencies, X-band (about 9.5 GHz) and Q-band (about 34 GHz), to identify the radicals present in irradiated captopril.
View Article and Find Full Text PDFSeveral reports in the literature have described the effects of radiation in workers who exposed their fingers to intense radioactive sources. The radiation injuries occurring after local exposure to a high dose (20 to 100 Gy) could lead to the need for amputation. Follow-up of victims needs to be more rational with a precise knowledge of the irradiated area that risks tissue degradation and necrosis.
View Article and Find Full Text PDF