Eur J Dermatol
February 2024
Vitiligo is a human pigmentary disorder characterized by autoimmune destruction of mature melanocytes in the skin. In addition to studies on the inflammatory component of the disease, current treatments tend to involve stimulation of local melanocyte stem cells or transplantation of functional melanocytes from uninjured areas, however, in some cases of extensive depigmentation, only a few healthy cells can be obtained. This review discusses examples in the literature of the use of different sources of autologous stem and somatic cells in order to obtain melanocyte progenitors or mature melanocytes, and compares the strategy of stem cell differentiation with that of somatic cell reprogramming.
View Article and Find Full Text PDFIntroduction: Elastic skin fibers lose their mechanical properties during aging due to enzymatic degradation, lack of maturation, or posttranslational modifications. Dill extract has been observed to increase elastin protein expression and maturation in a 3D skin model, to improve mechanical properties of the skin, to increase elastin protein expression in vascular smooth muscle cells, to preserve aortic elastic lamella, and to prevent glycation.
Objective: The aim of the study was to highlight dill actions on elastin fibers during aging thanks to elastase digestion model and the underlying mechanism.
Elastic fibers are extracellular macromolecules that provide resilience and elastic recoil to elastic tissues and organs in vertebrates. They are composed of an elastin core surrounded by a mantle of fibrillin-rich microfibrils and are essentially produced during a relatively short period around birth in mammals. Thus, elastic fibers have to resist many physical, chemical, and enzymatic constraints occurring throughout their lives, and their high stability can be attributed to the elastin protein.
View Article and Find Full Text PDFElastic fibers, made of elastin (90%) and fibrillin-rich microfibrils (10%), are the key extracellular components, which endow the arteries with elasticity. The alteration of elastic fibers leads to cardiovascular dysfunctions, as observed in elastin haploinsufficiency in mice () or humans (supravalvular aortic stenosis or Williams-Beuren syndrome). In and mice, we evaluated (arteriography, histology, qPCR, Western blots and cell cultures) the beneficial impact of treatment with a synthetic elastic protein (SEP), mimicking several domains of tropoelastin, the precursor of elastin, including hydrophobic elasticity-related domains and binding sites for elastin receptors.
View Article and Find Full Text PDF