Angew Chem Int Ed Engl
February 2024
Scientists have long been fascinated by the biomolecular machines in living systems that process energy and information to sustain life. The first synthetic molecular rotor capable of performing repeated 360° rotations due to a combination of photo- and thermally activated processes was reported in 1999. The progress in designing different molecular machines in the intervening years has been remarkable, with several outstanding examples appearing in the last few years.
View Article and Find Full Text PDFMolecular machines are essential dynamic components for fuel production, cargo delivery, information storage and processing in living systems. Scientists have demonstrated that they can design and synthesize artificial molecular machines that operate efficiently in isolation - for example, at high dilution in solution - fuelled by chemicals, electricity or light. To organize the spatial arrangement and motion of these machines within close proximity to one another in solid frameworks, such that useful macroscopic work can be performed, remains a challenge in both chemical and materials science.
View Article and Find Full Text PDFSingle enzyme chemotaxis is a phenomenon by which a nonequilibrium spatial distribution of an enzyme is created and maintained by concentration gradients of the substrate and product of the catalyzed reaction. These gradients can arise either naturally through metabolism or experimentally, e.g.
View Article and Find Full Text PDFMacroscopic electric motors continue to have a large impact on almost every aspect of modern society. Consequently, the effort towards developing molecular motors that can be driven by electricity could not be more timely. Here we describe an electric molecular motor based on a [3]catenane, in which two cyclobis(paraquat-p-phenylene) (CBPQT) rings are powered by electricity in solution to circumrotate unidirectionally around a 50-membered loop.
View Article and Find Full Text PDFThe year 2022 marks the 30th anniversary of the first reports of polyrotaxanes in the scientific literature. During the past three decades, many combinations of molecular rings and polymer chains have been synthesised and characterised. Until recently, however, the permutations of polyrotaxanes available to researchers were limited by synthetic methods which typically relied on an innate affinity between the molecular rings and polymer chains.
View Article and Find Full Text PDF