Publications by authors named "R De Gioannis"

Circadian clocks in the body drive daily cycles in physiology and behavior. A master clock in the brain maintains synchrony with the environmental day-night cycle and uses internal signals to keep clocks in other tissues aligned. Work in cell cultures uncovered cyclic changes in tissue oxygenation that may serve to reset and synchronize circadian clocks.

View Article and Find Full Text PDF

Introduction: The ability to metabolize fructose to bypass the glucose pathway in near-anaerobic conditions appears to contribute to the extreme hypoxia tolerance of the naked-mole rats. Therefore, we hypothesized that exogenous fructose could improve endurance capacity and cognitive performance in humans exposed to hypoxia.

Methods: In a randomized, double-blind, crossover study, 26 healthy adults (9 women, 17 men; 28.

View Article and Find Full Text PDF

Reduced-caloric intake lowers blood pressure through sympathetic inhibition, and worsens orthostatic tolerance within days. Conversely, hypercaloric nutrition augments sympathetic activity and blood pressure. Because dietary interventions could be applied in patients with syncope, we tested the hypothesis that short-term hypercaloric dieting improves orthostatic tolerance.

View Article and Find Full Text PDF

Background: Procollagen-III peptide (PIIINP) is a marker of fibrosis associated with increased cardiometabolic risk and progression of chronic liver diseases such as nonalcoholic fatty liver disease (NAFLD) and steatohepatitis; its association with type 2 diabetes mellitus (T2DM) has not been elucidated yet. The aim of this study was to investigate the relationship among circulating PIIINP levels, metabolic traits, and body fat distribution in subjects with T2DM with or without NAFLD.

Methods: Data from 62 T2DM subjects recruited in our diabetes outpatient clinics at Sapienza University of Rome, Italy, were analysed.

View Article and Find Full Text PDF

Context: Wnt1-inducible signaling pathway protein 1 (WISP1) is a novel adipokine participating in adipose tissue (AT) dysfunction; so far, no data on WISP1 in diabetes are available.

Objectives: To evaluate plasma WISP1 in subjects with type 2 diabetes (T2D) and its correlates linked to AT inflammation.

Design And Participants: For this cross-sectional study, 97 consecutive dysmetabolic patients were recruited at the diabetes outpatient clinics of Sapienza University in Rome; 71 of them had T2D, with (n = 35) or without (n = 36) obesity, and 26 were obese patients without diabetes.

View Article and Find Full Text PDF