Publications by authors named "R Danielius"

The purpose of this study was to investigate the possible cytotoxic and genotoxic impact of new-generation 206 nm femtosecond solid-state laser irradiation on murine skin cells in vitro, and to compare the cell and DNA damage caused by different wavelength (206 vs. 257 nm) femtosecond laser pulses. The first attempts to evaluate the possible genotoxic impact of ultrashort laser pulses on the murine bone marrow cells in vitro revealed the unlooked-for DNA-damaging effect.

View Article and Find Full Text PDF

Objective: The purpose of this study was to investigate the possible genotoxic impact of new generation 205 nm femtosecond solid-state laser irradiation on the DNA of murine bone marrow cells in vitro, and to compare the DNA damage caused by both femtosecond and nanosecond UV laser pulses.

Background Data: Recent experiments of corneal stromal ablation in vitro and in vivo applying femtosecond UV pulses showed results comparable with or superior to those obtained using nanosecond UV lasers. However, the possible genotoxic effect of ultrashort laser pulses was not investigated.

View Article and Find Full Text PDF

Femtosecond near-infrared lasers are widely used for a number of ophthalmic procedures, with flap cutting in the laser-assisted in situ keratomileusis (LASIK) surgery being the most frequent one. At the same time, lasers of this type, equipped with harmonic generators, have been shown to deliver enough ultraviolet (UV) power for the second stage of the LASIK procedure, the stromal ablation. However, the speed of the ablation reported so far was well below the currently accepted standards.

View Article and Find Full Text PDF

We present a compact TW-class OPCPA system operating at 800 nm. Broadband seed pulses are generated and pre-amplified to 25 μJ in a white light continuum seeded femtosecond NOPA. Amplification of the seed pulses to 35 mJ at a repetition rate of 10 Hz and compression to 9 fs is demonstrated.

View Article and Find Full Text PDF

Purpose: To determine the effectiveness of femtosecond ultraviolet (UV) pulses in ablating corneal stroma in a rabbit model and to compare the healing response between eyes treated with femtosecond UV pulses and eyes treated with standard excimer photorefractive keratectomy.

Setting: Laser Research Center, Vilnius University, Vilnius, Lithuania.

Design: Experimental study.

View Article and Find Full Text PDF