Publications by authors named "R Dalmeijer"

Biomimetic calcium phosphate (Ca-P) coatings were applied onto dense titanium alloy (Ti6Al4V) and porous tantalum (Ta) cylinders by immersion into simulated body fluid at 37 degrees C and then at 50 degrees C for 24 h. As a result, a homogeneous bone-like carbonated apatitic (BCA) coating, 30 microm thick was deposited on the entire surface of the dense and porous implants. Noncoated and BCA-coated implants were press-fit implanted in the femoral diaphysis of 14 adult female goats.

View Article and Find Full Text PDF

The biomimetic route allows the homogeneous deposition of calcium phosphate (Ca-P) coatings on porous implants by immersion in simulated physiologic solution. In addition, various Ca-P phases, such as octacalcium phosphate (OCP) or bone-like carbonated apatite (BCA), which are stable only at low temperatures, can be deposited. In this pilot study, experiments were designed with a twofold-purpose: (1) to investigate the osteoinduction of OCP-coated and noncoated porous tantalum cylinders and of dense titanium alloy cylinders (5 mm in diameter and 10 mm in length) in the back muscle of goats at 12 and 24 weeks (n = 4); and (2) to compare the osteogenic potentials of BCA-coated, OCP-coated, and bare porous tantalum cylinders in a gap of 1 mm created in the femoral condyle of a goat at 12 weeks (n = 2).

View Article and Find Full Text PDF

Calcium phosphate (Ca-P) coatings have been applied onto titanium alloys prosthesis to combine the srength of metals with the bioactivity of Ca-P. It has been clearly shown in many publications that Ca-P coating accelerates bone formation around the implant. However, longevity of the Ca-P coating for an optimal bone apposition onto the prosthesis remains controversial.

View Article and Find Full Text PDF

Bone defects and their treatment are a well known problem in orthopaedic surgery. A critical size defect is a suitable model to study bone replacement materials. This study describes a critical size defect in the goal and the evaluation of three bone fillers (particulate autograft, particulate allograft, and a polyethylene oxide/polybutylene terephthalate copolymer) in this defect.

View Article and Find Full Text PDF