Publications by authors named "R D Trelles"

To investigate the effect of incorporating bis(monoacylglycerol)phosphate (BMP) lipid into a lipid nanoparticle and the functional transport of mRNA by the formulated nanoparticles . The nanoparticles were prepared from ionizable lipid, 1,2-distearoyl--glycerol-3-phosphocholine, cholesterol, 1,2-dimyristoyl--glycerol PEG 2000, BMP and formulated mRNA encoding human erythropoietin. We measured the effect of BMP on physicochemical properties and impact on functional efficacy to transport mRNA to its target cells/tissue as measured by protein expression both and .

View Article and Find Full Text PDF

Defining the mechanisms underlying the control of mitochondrial fusion and fission is critical to understanding cellular adaptation to diverse physiological conditions. Here we demonstrate that hypoxia induces fission of mitochondrial membranes, dependent on availability of the mitochondrial scaffolding protein AKAP121. AKAP121 controls mitochondria dynamics through PKA-dependent inhibitory phosphorylation of Drp1 and PKA-independent inhibition of Drp1-Fis1 interaction.

View Article and Find Full Text PDF

The intracellular signaling mechanisms underlying the pathogenesis of cardiac diseases are not fully understood. We report here that selective deletion of Shp2, an SH2-containing cytoplasmic tyrosine phosphatase, in striated muscle results in severe dilated cardiomyopathy in mice, leading to heart failure and premature mortality. Development of cardiomyopathy in this mouse model is coupled with insulin resistance, glucose intolerance, and impaired glucose uptake in striated muscle cells.

View Article and Find Full Text PDF

Vascular endothelial growth factor D (VEGF-D) is a member of the VEGF/PDGF superfamily that has been implicated in angiogenesis and lymphangiogenesis. We have isolated a chick cDNA that shows homology with VEGF-D (also known as FIGF, c-fos-induced growth factor) of other species. Here, we describe the expression pattern of cVegf-D in chick embryos.

View Article and Find Full Text PDF

AMPA receptors mediate most of the fast excitatory synaptic transmission in the mammalian CNS. Their ontogeny during embryonic (E) and postnatal (P) development is still poorly understood. We have studied the expression of the genes encoding for AMPA glutamate receptor subunits (GlurA, GlurB, GlurC and GlurD) in the rat ventral mesencephalon (MES) and striatum (STR) and in fetal midbrain primary cultures.

View Article and Find Full Text PDF