Publications by authors named "R D Polakiewicz"

Single-cell RNA sequencing (scRNA-seq) has revolutionized cell biology by enabling the profiling of transcriptomes at a single-cell resolution, leading to important discoveries that have advanced our understanding of cellular and tissue heterogeneity, developmental trajectories, and disease progression. Despite these important advances, scRNA-seq is limited to measuring the transcriptome providing a partial view of cellular function. To address this limitation, multimodal scRNA-seq assays have emerged, allowing for the simultaneous measurement of RNA expression and protein.

View Article and Find Full Text PDF
Article Synopsis
  • 14-3-3 proteins are essential for managing cellular responses to stress and DNA damage, influencing processes like metabolism, cell cycle, migration, and apoptosis by binding to specific proteins after they're modified by kinases.
  • Despite identifying over 200 proteins that interact with 14-3-3 through proteomic studies, the specific kinases involved in these interactions are often unknown.
  • Researchers developed a method to pinpoint these kinase-specific interactions, discovering that the protein PABPC1 is a target for kinases Chk1 and MK2, with a specific site (Ser-470) crucial for its binding to 14-3-3; loss of this binding leads to increased cell growth and reduced cell death following DNA damage
View Article and Find Full Text PDF

Antibodies to SARS-CoV-2 are central to recovery and immunity from COVID-19. However, the relationship between disease severity and the repertoire of antibodies against specific SARS-CoV-2 epitopes an individual develops following exposure remains incompletely understood. Here, we studied seroprevalence of antibodies to specific SARS-CoV-2 and other betacoronavirus antigens in a well-annotated, community sample of convalescent and never-infected individuals obtained in August 2020.

View Article and Find Full Text PDF

The ability to reproduce scientific findings is foundational in research; yet, it is compromised in part by poorly characterized reagents, including antibodies. In this report, we describe the application of complementary validation strategies tailored for use in immunohistochemical assays in the characterization of rabbit monoclonal antibodies against YAP and TAZ, homologous and sequentially similar transcriptional effectors of the Hippo signaling pathway. A lack of antibody reagents rigorously validated for immunohistochemistry has limited the Hippo signaling research community's ability to interrogate YAP and TAZ independently in tissue.

View Article and Find Full Text PDF

MUC1 is a shared tumor antigen expressed on >80% of human cancers. We completed the first prophylactic cancer vaccine clinical trial based on a non-viral antigen, MUC1, in healthy individuals at-risk for colon cancer. This trial provided a unique source of potentially effective and safe immunotherapeutic drugs, fully-human antibodies affinity-matured in a healthy host to a tumor antigen.

View Article and Find Full Text PDF