Publications by authors named "R D Makde"

Article Synopsis
  • * A study on S9 peptidase from Bacillus subtilis (S9bs) has confirmed its carboxypeptidase activity, which was previously unclear, highlighting key structural elements essential for this function.
  • * The research also revealed S9bs forms stable tetramers and identified its molecular arrangement, providing insights that could aid in therapeutic and drug design related to S9 family enzymes.
View Article and Find Full Text PDF

A number of small molecule and protein therapeutic candidates have been developed in the last four years against SARS-CoV-2 spike. However, there are hardly a few molecules that have advanced through the subsequent discovery steps to eventually work as a therapeutic agent. This is majorly because of the hurdles in determining the affinity of potential therapeutics with live SARS-CoV-2 virus.

View Article and Find Full Text PDF

Amino acid propensities for protein secondary structures are vital for protein structure prediction, understanding folding, and design, and have been studied using various theoretical and experimental methods. Traditional assessments of average propensities using statistical methods have been done on relatively smaller dataset for only a few secondary structures. They also involve averaging out the environmental factors and lack insights into consistency of preferences across diverse protein structures.

View Article and Find Full Text PDF

Aminopeptidases with varied substrate specificities are involved in different crucial physiological processes of cellular homeostasis. They also have wide applications in food and pharma industries. Within the bacterial cell, broad specificity aminopeptidases primarily participate in the recycling of amino acids by degrading oligopeptides generated via primary proteolysis mediated by cellular ATP-dependent proteases.

View Article and Find Full Text PDF

Products of microbial protein metabolism in the gut can influence the health of the host in many ways. Members of the Bacteriodales, major commensals of the human colon have been associated with long-term intake of high-protein diets. Undigested proteins or peptides that reach the colon can be hydrolyzed by extra-cellular proteases found in some Bacteroides species into amino acids and peptides which can be further catabolized.

View Article and Find Full Text PDF