The signature feature of the 'strange metal' state of high-T cuprates-its linear-in-temperature resistivity-has a coefficient α that correlates with T, as expected were α derived from scattering off the same bosonic fluctuations that mediate pairing. Recently, an anomalous linear-in-field magnetoresistance (=γH) has also been observed, but only over a narrow doping range, leaving its relation to the strange metal state and to the superconductivity unclear. Here, we report in-plane magnetoresistance measurements on three hole-doped cuprate families spanning a wide range of temperatures, magnetic field strengths and doping.
View Article and Find Full Text PDFSuperconductivity often emerges as a dome around a quantum critical point (QCP) where long-range order is suppressed to zero temperature, mostly in magnetically ordered materials. However, the emergence of superconductivity at charge-order QCPs remains shrouded in mystery, despite its relevance to high-temperature superconductors and other exotic phases of matter. Here, we present resistance measurements proving that a dome of superconductivity surrounds the putative charge-density-wave QCP in pristine samples of titanium diselenide tuned with hydrostatic pressure.
View Article and Find Full Text PDFUpon cooling, condensed-matter systems typically transition into states of lower symmetry. The converse-i.e.
View Article and Find Full Text PDF