Publications by authors named "R D Dewell"

By definition, ill and injured animals are on the negative valence of animal welfare. For beef cattle kept in feedlot settings, advances in cattle health management have resulted in a greater understanding and prevention of illness and injury. However, the management of cattle once they become ill and injured is an understudied area, and there are gaps in knowledge that could inform evidence-based decision-making and strengthen welfare for this population.

View Article and Find Full Text PDF

Background: Hypothermia is a cause of neonatal calf death in cold climates. Practical and effective rewarming methods are important for bovine health within affected regions.

Hypothesis/objectives: To compare the rewarming rate and blood analytes (glucose, lactate, and cortisol) of calves resuscitated with forced air with warm water bath, with or without oral administration of caffeine.

View Article and Find Full Text PDF

In animal species ranging from invertebrate to mammals, visually guided escape behaviours have been studied using looming stimuli, the two-dimensional expanding projection on a screen of an object approaching on a collision course at constant speed. The peak firing rate or membrane potential of neurons responding to looming stimuli often tracks a fixed threshold angular size of the approaching stimulus that contributes to the triggering of escape behaviours. To study whether this result holds more generally, we designed stimuli that simulate acceleration or deceleration over the course of object approach on a collision course.

View Article and Find Full Text PDF

The processing of visual information for collision avoidance has been investigated at the biophysical level in several model systems. In grasshoppers, the (so-called) [Formula: see text] model captures reasonably well the visual processing performed by an identified neuron called the lobular giant movement detector as it tracks approaching objects. Similar phenomenological models have been used to describe either the firing rate or the membrane potential of neurons responsible for visually guided collision avoidance in other animals.

View Article and Find Full Text PDF

Neurons receive information through their synaptic inputs, but the functional significance of how those inputs are mapped on to a cell's dendrites remains unclear. We studied this question in a grasshopper visual neuron that tracks approaching objects and triggers escape behavior before an impending collision. In response to black approaching objects, the neuron receives OFF excitatory inputs that form a retinotopic map of the visual field onto compartmentalized, distal dendrites.

View Article and Find Full Text PDF