Publications by authors named "R D Billica"

Introduction: The International Space Station will need to be as capable as possible in providing Advanced Cardiac Life Support (ACLS) and cardiopulmonary resuscitation (CPR). Previous studies with manikins in parabolic microgravity (0 G) have shown that delivering CPR in microgravity is difficult. End tidal carbon dioxide (PetCO2) has been previously shown to be an effective non-invasive tool for estimating cardiac output during cardiopulmonary resuscitation.

View Article and Find Full Text PDF

Neurovestibular symptoms experienced by astronauts in the post-flight period were examined using data from medical debriefs contained in the NASA Longitudinal Study of Astronaut Health database. Ten symptoms were identified (clumsiness, difficulty concentrating, persisting sensation aftereffects, nausea, vomiting, vertigo while walking, vertigo while standing, difficulty walking a straight line, blurred vision, and dry heaves), of which eight were crossed with twelve demographic parameters (mission duration, astronaut gender, age, one-g piloting experience, previous space flight experience, g-suit inflation, g-suit deflation, in-flight space motion sickness, in-flight exercise, post-flight exercise, mission role, fluid loading). Three symptoms were experienced by a majority of subjects, and another two by more than a quarter of the subjects.

View Article and Find Full Text PDF

Background: As a medical emergency that can affect even well-screened, healthy individuals, peritonitis developing during a long-duration space exploration mission may dictate deviation from traditional clinical practice due to the absence of otherwise indicated surgical capabilities. Medical management can treat many intra-abdominal processes, but treatment failures are inevitable. In these circumstances, percutaneous aspiration under sonographic guidance could provide a "rescue" strategy.

View Article and Find Full Text PDF

Background: Medical operations on the International Space Station will emphasize the stabilization and transport of critically injured personnel and so will need to be capable of advanced trauma life support (ATLS).

Methods: We evaluated the ATLS invasive procedures in the microgravity environment of parabolic flight using a porcine animal model. Included in the procedures evaluated were artificial ventilation, intravenous infusion, laceration closure, tracheostomy, Foley catheter drainage, chest tube insertion, peritoneal lavage, and the use of telemedicine methods for procedural direction.

View Article and Find Full Text PDF

Background: Performing a surgical procedure in weightlessness, also called 0-gravity (0-g), has been shown to be no more difficult than in a 1-g environment if the requirements for the restraint of the patient, operator, surgical hardware, are observed. The performance of laparoscopic and thorascopic procedures in weightlessness, if feasible, would offer several advantages over the performance of an open operation. Concerns about the feasibility of performing minimally invasive procedures in weightlessness have included impaired visualization from the absence of gravitational retraction of the bowel (laparoscopy) or thoracic organs (thoracoscopy) as well as obstruction and interference from floating debris such as blood, pus, and irrigation fluid.

View Article and Find Full Text PDF