A compact and low-cost two-dimensional (2D) thermal imager was developed for real-time temperature mapping of a melt pool during coaxial laser cladding (the additive manufacturing technique). The device combines a color CMOS camera and a compact spectrometer. The spectrometer was utilized for internal calibration and validation of a 2D temperature map that was acquired by the CMOS camera.
View Article and Find Full Text PDFLaser-induced breakdown spectroscopy (LIBS) has been utilized for in situ diagnostics of the laser welding process. The influence of different weld spot areas (melt pool, solid weld) on LIBS signals and plasma properties has been studied in detail. Liquid metal sampling and high target surface temperature of the melt enhance LIBS plasma intensity and increase plasma temperature.
View Article and Find Full Text PDFThe feasibility of in situ quantitative multielemental analysis and production failures detection by laser induced breakdown spectroscopy (LIBS) has been demonstrated during direct energy deposition process in additive manufacturing. Compact LIBS probe was developed and equipped with the laser cladding head installed at industrial robot for real-time chemical quantitative analysis of key components (Ni, W) during the synthesis of high wear resistant coatings of nickel alloy reinforced with tungsten carbide particles. Owing to non-uniform distribution of tungsten carbide grains in the upper surface layer the only acceptable choice for LIBS sampling was made to the melt pool at growing clad.
View Article and Find Full Text PDFThe comparison of laser ablation and plasma evolution has been carried out for a molten steel sample in the absence and in the presence of surface plasma. A continuous wave (cw) laser beam was utilized for local melting of a steel (Fe>99 wt.%) sample, but it also induced a surface plasma according to optical emission spectroscopy.
View Article and Find Full Text PDF