Adv Sci (Weinh)
November 2024
Nanovaccines have significantly contributed in the prevention and treatment of diseases. However, most of these technologies rely on chemical or hybrid semibiological synthesis methods, which limit the manufacturing performance advantages and improved inoculation outcomes compared with traditional vaccines. Herein, a universal and purely biological nanovaccine system is reported.
View Article and Find Full Text PDFThis review is focused on describing and analyzing means by which serotype strains have been genetically modified with the purpose of developing safe, efficacious vaccines to present -induced disease in poultry and to prevent colonization of poultry to reduce transmission through the food chain in and on eggs and poultry meat. Emphasis is on use of recently developed means to generate defined deletion mutations to eliminate genetic sequences conferring antimicrobial resistance or residual elements that might lead to genetic instability. Problems associated with prior means to develop vaccines are discussed with presentation of various means by which these problems have been lessened, if not eliminated.
View Article and Find Full Text PDFInfectious bronchitis (IB) is a highly infectious viral disease of chickens which causes significant economic losses in the poultry industry worldwide. An effective vaccine against IB is urgently needed to provide both biosafety and high-efficiency immune protection. In this study, the S1 protein of the infectious bronchitis virus was delivered by a recombinant attenuated vector to form the vaccine candidate χ11246(pYA4545-S1).
View Article and Find Full Text PDFStreptococcus pneumoniae (Spn) is a common pathogen causing a secondary bacterial infection following influenza, which leads to severe morbidity and mortality during seasonal and pandemic influenza. Therefore, there is an urgent need to develop bacterial vaccines that prevent severe post-influenza bacterial pneumonia. Here, an improved Yersinia pseudotuberculosis strain (designated as YptbS46) possessing an Asd plasmid pSMV92 could synthesize high amounts of the Spn pneumococcal surface protein A (PspA) antigen and monophosphoryl lipid A as an adjuvant.
View Article and Find Full Text PDFEngineered vector-based in vivo protein delivery platforms have made significant progress for both prophylactic and therapeutic applications. However, the lack of effective release strategies results in foreign cargo being trapped within the vector, restricting the provision of significant performance benefits and enhanced therapeutic results compared to traditional vaccines. Herein, the development of a Salmonella mRNA interferase regulation vector (SIRV) system is reported to overcome this challenge.
View Article and Find Full Text PDF