Publications by authors named "R Curtis Haltiwanger"

Mutations in protein -glucosyltransferase 1 ( ) cause a recessive form of limb-girdle muscular dystrophy (LGMD-R21) associated with reduced satellite cell number and NOTCH1 signaling in adult patient muscles and impaired myogenic capacity of patient-derived muscle progenitors. However, the roles of POGLUT1 in the development, function, and maintenance of satellite cells are not well understood. Here, we show that conditional deletion of mouse in myogenic progenitors leads to early lethality, postnatal muscle growth defects, reduced expression, abnormality in muscle extracellular matrix, and impaired muscle repair.

View Article and Find Full Text PDF

Cellular adaptations to change often involve post-translational modifications of nuclear and cytoplasmic proteins. An example found in protists and plants is the modification of serine and threonine residues of dozens to hundreds of nucleocytoplasmic proteins with a single fucose (O-Fuc). A nucleocytoplasmic O-fucosyltransferase (OFT) occurs in the pathogen , the social amoeba , and higher plants, where it is called Spy because mutants have a spindly appearance.

View Article and Find Full Text PDF

NOTCH1 is a transmembrane receptor interacting with membrane-tethered ligands on opposing cells that mediate the direct cell-cell interaction necessary for many cell fate decisions. Protein O-fucosyltransferase 1 (POFUT1) adds O-fucose to Epidermal Growth Factor (EGF)-like repeats in the NOTCH1 extracellular domain, which is required for trafficking and signaling activation. We previously showed that POFUT1 S162L caused a 90% loss of POFUT1 activity and global developmental defects in a patient; however, the mechanism by which POFUT1 contributes to these symptoms is still unclear.

View Article and Find Full Text PDF

Fibrillin microfibrils play a critical role in the formation of elastic fibers, tissue/organ development, and cardiopulmonary function. These microfibrils not only provide structural support and flexibility to tissues, but they also regulate growth factor signaling through a plethora of microfibril-binding proteins in the extracellular space. Mutations in fibrillins are associated with human diseases affecting cardiovascular, pulmonary, skeletal, and ocular systems.

View Article and Find Full Text PDF

NOTCH1 (N1) is a transmembrane receptor interacting with membrane-tethered ligands on opposing cells that mediate the direct cell-cell interaction necessary for many cell fate decisions. Protein -fucosyltransferase 1 (POFUT1) adds -fucose to Epidermal Growth Factor (EGF)-like repeats in the NOTCH1 extracellular domain, which is required for trafficking and signaling activation. We previously showed that caused a 90% loss of POFUT1 activity and global developmental defects in a patient; however, the mechanism by which POFUT1 contributes to these symptoms is still unclear.

View Article and Find Full Text PDF