Publications by authors named "R Cunning"

Unlabelled: The coral-dinoflagellate endosymbiosis is based on nutrient exchanges that impact holobiont energetics. Of particular concern is the breakdown or dysbiosis of this partnership that is seen in response to elevated temperatures, where loss of symbionts through coral bleaching can lead to starvation and mortality. Here we extend a dynamic bioenergetic model of coral symbioses to explore the mechanisms by which temperature impacts various processes in the symbiosis and to enable simulational analysis of thermal bleaching.

View Article and Find Full Text PDF

Monitoring coral cover can describe the ecology of reef degradation, but rarely can it reveal the proximal mechanisms of change, or achieve its full potential in informing conservation actions. Describing temporal variation in Symbiodiniaceae within corals can help address these limitations, but this is rarely a research priority. Here, we augmented an ecological time series of the coral reefs of St.

View Article and Find Full Text PDF

Climate change-amplified marine heatwaves can drive extensive mortality in foundation species. However, a paucity of longitudinal genomic datasets has impeded understanding of how these rapid selection events alter cryptic genetic structure. Heatwave impacts may be exacerbated in species that engage in obligate symbioses, where the genetics of multiple coevolving taxa may be affected.

View Article and Find Full Text PDF

Historically, Hawai'i had few massive coral bleaching events, until two consecutive heatwaves in 2014-2015. Consequent mortality and thermal stress were observed in Kāne'ohe Bay (O'ahu). The two most dominant local species exhibited a phenotypic dichotomy of either bleaching resistance or susceptibility (Montipora capitata and Porites compressa), while the third predominant species (Pocillopora acuta) was broadly susceptible to bleaching.

View Article and Find Full Text PDF
Article Synopsis
  • Microeukaryotes, like the dinoflagellate family Symbiodiniaceae, show faster genetic and functional variations compared to physical traits, making it essential to analyze diversity across different biological levels for better evolutionary insights.
  • Despite advancements in genomics, inconsistent interpretations of genetic data among researchers hinder progress in understanding Symbiodiniaceae and their roles in marine ecosystems.
  • The article identifies challenges in evaluating genetic diversity at the species, population, and community levels, proposes accepted techniques, and emphasizes the need for collaboration to overcome unresolved issues and stimulate advancements in coral reef research.
View Article and Find Full Text PDF