Publications by authors named "R Corley"

Risk of lung damage from inhaled chemicals or substances has long been assessed using animal models. However, New Approach Methodologies (NAMs) that replace, reduce, and/or refine the use of animals in safety testing such as 2D and 3D cultures are increasingly being used to understand human-relevant toxicity responses and for the assessment of hazard identification. Here we review 2D and 3D lung models in terms of their application for inhalation toxicity assessment.

View Article and Find Full Text PDF

Playing video games, especially games with action-based mechanics, is correlated with better cognitive performance, yet these performance advantages may originate from intrinsic factors such as earlier life cognitive differences. We investigated whether gaming-cognition associations in a sample past young adulthood remain robust after accounting for adolescent cognitive functioning. Using data from the Colorado Adoption/Twin Study of Lifespan behavioral development and cognitive aging (CATSLife; N = 1241, M = 33.

View Article and Find Full Text PDF

Determining the fate of inhaled aerosols in the respiratory system is essential in assessing the potential toxicity of inhaled airborne materials, responses to airborne pathogens, or in improving inhaled drug delivery. The availability of high-resolution clinical lung imaging and advances in the reconstruction of lung airways from CT images have led to the development of subject-specific in-silico 3D models of aerosol dosimetry, often referred to as computational fluid-particle-dynamics (CFPD) models. As CFPD models require extensive computing resources, they are typically confined to the upper and large airways.

View Article and Find Full Text PDF
Article Synopsis
  • * The study introduces enhanced modeling techniques for neutrino flux and detector response, and it distinguishes between starting (inside) and throughgoing (outside) neutrino interaction events to improve energy resolution.
  • * The findings indicate a best-fit point for the 3+1 model with sin²(2θ_{24})=0.16 and Δm_{41}²=3.5 eV², supporting previous studies while showing consistency with no evidence of sterile neutrinos, as reflected
View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on how age-related anatomical changes in children and the elderly affect airflow and particle deposition in nasal airways, which has not been thoroughly investigated before.
  • Using Computational Fluid-Particle Dynamics (CFPD), the researchers conducted simulations on 9 healthy subjects across different ages, analyzing data from a primary group and validating it with a secondary group.
  • Results indicate distinct particle deposition patterns in children and the elderly compared to young adults, leading to the development of empirical equations to better predict nasal deposition efficiency across various ages, ultimately aiming to enhance respiratory health throughout life.
View Article and Find Full Text PDF