Ecotoxicol Environ Saf
April 2019
Proteomic changes in the "gill-bacteria complex" of the hydrothermal vent mussel B. azoricus exposed to cadmium in pressurized chambers ((Incubateurs Pressurises pour l'Observation en Culture d'Animaux Marins Profonds - IPOCAMP) were analyzed and compared with the non-exposed control group. 2-D Fluorescence Difference Gel Electrophoresis (2D-DIGE) showed that less than 1.
View Article and Find Full Text PDFBackground: Lowering blood pressure (BP) by antihypertensive (AHT) drugs reduces the risks of cardiovascular events, stroke, and total mortality. However, poor adherence to AHT medications reduces their effectiveness and increases the risk of adverse events.
Objective: To evaluate the effectiveness of a multifactorial adherence-based intervention in a primary care setting in lowering BP.
Environ Sci Pollut Res Int
November 2015
The composition and concentration of substances in urban effluents are complex and difficult to measure. These contaminants elicit biological responses in the exposed organisms. Proteomic analysis is a powerful tool in environmental toxicology by evidencing alterations in protein expression due to exposure to contaminants and by providing a useful framework for the development of new potential biomarkers.
View Article and Find Full Text PDFOrganochlorine compounds as polychlorinated biphenyls (PCBs) and pp'-dichlorodiphenyldichloroethylene (pp'DDE) are ubiquitous, resistant to degradation and lipophilic compounds, commonly found in the general population. Prenatal exposure to these compounds has been associated to adverse developmental effects. Levels of PCBs and pp'DDE were investigated in maternal and umbilical cord serum of 68 women/newborns pairs from Algarve, South Portugal.
View Article and Find Full Text PDFUnderstanding the factors that influence biological responses to contaminants has long been a major goal in marine environmental research. Seven estuarine sites along the Portuguese coast were sampled over a year, and different biological responses of Pomatoschistus microps and Atherina presbyter were determined: superoxide dismutase, catalase, ethoxyresorufin O-deethylase, glutathione S-transferase, metallothioneins, lipid peroxidation, RNA:DNA ratio and condition factor K. Generalized linear models (GLM) were developed for each biological variable per species in relation to sediment chemical characterization (metals and polycyclic aromatic hydrocarbons concentration) and environmental conditions (month, site, water temperature, salinity, depth and mud percentage in the sediment).
View Article and Find Full Text PDF