IEEE J Sel Top Quantum Electron
November 2014
Solution-based single-molecule fluorescence spectroscopy is a powerful experimental tool with applications in cell biology, biochemistry and biophysics. The basic feature of this technique is to excite and collect light from a very small volume and work in a low concentration regime resulting in rare burst-like events corresponding to the transit of a single molecule. Detecting photon bursts is a challenging task: the small number of emitted photons in each burst calls for high detector sensitivity.
View Article and Find Full Text PDFThe past decade has seen an explosive growth in the utilization of single-molecule techniques for the study of complex systems. The ability to resolve phenomena otherwise masked by ensemble averaging has made these approaches especially attractive for the study of biological systems, where stochastic events lead to inherent inhomogeneity at the population level. The complex composition of the genome has made it an ideal system to study at the single-molecule level, and methods aimed at resolving genetic information from long, individual, genomic DNA molecules have been in use for the last 30 years.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
February 2013
Two optical configurations are commonly used in single-molecule fluorescence microscopy: point-like excitation and detection to study freely diffusing molecules, and wide field illumination and detection to study surface immobilized or slowly diffusing molecules. Both approaches have common features, but also differ in significant aspects. In particular, they use different detectors, which share some requirements but also have major technical differences.
View Article and Find Full Text PDFFluorescence lifetime can be used as a contrast mechanism to distinguish fluorophores for localization or tracking, for studying molecular interactions, binding, assembly, and aggregation, or for observing conformational changes via Förster resonance energy transfer (FRET) between donor and acceptor molecules. Fluorescence lifetime imaging microscopy (FLIM) is thus a powerful technique but its widespread use has been hampered by demanding hardware and software requirements. FLIM data is often analyzed in terms of multicomponent fluorescence lifetime decays, which requires large signals for a good signal-to-noise ratio.
View Article and Find Full Text PDF