Climate change is having increasingly profound effects on human health, notably those associated with the occurrence, distribution, and transmission of infectious diseases. The number of disparate ecological parameters and pathogens affected by climate change are vast and expansive. Disentangling the complex relationship between these variables is critical for the development of effective countermeasures against its effects.
View Article and Find Full Text PDFThe incidence of vibriosis is rising globally with evidence of climate variability influencing environmental processes that support growth of pathogenic . The waterborne pathogen, can invade wounds and has one of the highest case fatality rates in humans. The bacterium cannot be eradicated from the aquatic environment, hence climate driven environmental conditions enhancing growth and dissemination of .
View Article and Find Full Text PDFAntibiotics are often used to treat severe infections, with third-generation cephalosporins and tetracyclines combined or fluoroquinolones alone being recommended by the US Centers for Disease Control and Prevention. Increases in antibiotic resistance of both environmental and clinical vibrios are of concern; however, limited longitudinal data have been generated among environmental isolates to inform how resistance patterns may be changing over time. Hence, we evaluated long-term trends in antibiotic resistance of vibrios isolated from Chesapeake Bay waters (Maryland) across two 3-year sampling periods (2009-2012 and 2019-2022).
View Article and Find Full Text PDF