Publications by authors named "R Coldea"

The physics of spin-orbit entangled magnetic moments of 4d and 5d transition metal ions on a honeycomb lattice has been much explored in the search for unconventional magnetic orders or quantum spin liquids expected for compass spin models, where different bonds in the lattice favour different orientations for the magnetic moments. Realising such physics with rare-earth ions is a promising route to achieve exotic ground states in the extreme spin-orbit limit; however, this regime has remained experimentally largely unexplored due to major challenges in materials synthesis. Here we report the successful synthesis of powders and single crystals of β-NaPrO, with 4f Pr j = 1/2 magnetic moments arranged on a hyperhoneycomb lattice with the same threefold coordination as the planar honeycomb.

View Article and Find Full Text PDF

Rare-earth oxides have attracted interest as a platform for studying frustrated magnetism arising from bond-dependent anisotropic interactions. Ordered rock salt compounds NaPrO crystallize in two polymorphs (α and β) comprising honeycomb and hyperhoneycomb lattices of octahedrally coordinated Pr (4). Although possible realization of antiferromagnetic Kitaev interactions is anticipated for these phases on the basis of models, the air sensitivity of the two polymorphs has hampered reliable crystal growth and physical property measurements.

View Article and Find Full Text PDF

The lack of methods to experimentally detect and quantify entanglement in quantum matter impedes our ability to identify materials hosting highly entangled phases, such as quantum spin liquids. We thus investigate the feasibility of using inelastic neutron scattering (INS) to implement a model-independent measurement protocol for entanglement based on three entanglement witnesses: one-tangle, two-tangle, and quantum Fisher information (QFI). We perform high-resolution INS measurements on Cs_{2}CoCl_{4}, a close realization of the S=1/2 transverse-field XXZ spin chain, where we can control entanglement using the magnetic field, and compare with density-matrix renormalization group calculations for validation.

View Article and Find Full Text PDF

Recent theoretical proposals have argued that cobaltates with edge-sharing octahedral coordination can have significant bond-dependent exchange couplings thus offering a platform in 3d ions for such physics beyond the much-explored realisations in 4d and 5d materials. Here we present high-resolution inelastic neutron scattering data within the magnetically ordered phase of the stacked honeycomb magnet CoTiO revealing the presence of a finite energy gap and demonstrate that this implies the presence of bond-dependent anisotropic couplings. We also show through an extensive theoretical analysis that the gap further implies the existence of a quantum order-by-disorder mechanism that, in this material, crucially involves virtual crystal field fluctuations.

View Article and Find Full Text PDF