Publications by authors named "R Chechik"

This study explores the possibility of using X-ray fluorescence (XRF)-based trace-element analysis for differentiation of various bovine neck tissues. It is motivated by the requirement for an intra-operative in-vivo method for identifying parathyroid glands, particularly beneficial in surgery in the central neck-compartment. Using a dedicated X-ray spectral analysis, we examined ex-vivo XRF spectra from various histologically verified fresh neck tissues from cow, which was chosen as the animal model; these tissues included fat, muscle, thyroid, parathyroid, lymph nodes, thymus and salivary gland.

View Article and Find Full Text PDF

Background: PSA blood test and other present screening tools fail to provide the required sensitivity and specificity and, at early stages, lack correlation with tumor grade, volume, and location. Thus alternative approaches are highly desired. We present and assess a novel method for PCa detection, grading, volume evaluation and tumor location, based on non-invasive zinc concentration mapping in the gland by means of a dedicated rectal probe.

View Article and Find Full Text PDF

We present a nanodosimetric model for predicting the yield of double strand breaks (DSBs) and non-DSB clustered damages induced in irradiated DNA. The model uses experimental ionization cluster size distributions measured in a gas model by an ion counting nanodosimeter or, alternatively, distributions simulated by a Monte Carlo track structure code developed to simulate the nanodosimeter. The model is based on a straightforward combinatorial approach translating ionizations, as measured or simulated in a sensitive gas volume, to lesions in a DNA segment of one-two helical turns considered equivalent to the sensitive volume of the nanodosimeter.

View Article and Find Full Text PDF

Evaluation and monitoring of the cancer risk from space radiation exposure is a crucial requirement for the success of long-term space missions. One important task in the risk calculation is to properly weigh the various components of space radiation dose according to their assumed contribution to the cancer risk relative to the risk associated with radiation of low ionization density. Currently, quality factors of radiation both on the ground and in space are defined by national and international commissions based on existing radiobiological data and presumed knowledge of the ionization density distribution of the radiation field at a given point of interest.

View Article and Find Full Text PDF

The present work deals with the analysis of prostatic-zinc-concentration images. The goal is to evaluate potential clinically relevant information that can be extracted from such images. In the absence of experimental images, synthetic ones are produced from clinically measured zinc-concentration distributions in certified benign and cancerous tissue samples, classified by the lesion grade.

View Article and Find Full Text PDF