Retinoic acid (RA) is a standard-of-care neuroblastoma drug thought to be effective by inducing differentiation. Curiously, RA has little effect on primary human tumors during upfront treatment but can eliminate neuroblastoma cells from the bone marrow during post-chemo consolidation therapy-a discrepancy that has never been explained. To investigate this, we treated a large cohort of neuroblastoma cell lines with RA and observed that the most RA-sensitive cells predominantly undergo apoptosis or senescence, rather than differentiation.
View Article and Find Full Text PDFNeuroblastoma is a common pediatric cancer, where preclinical studies suggest that a mesenchymal-like gene expression program contributes to chemotherapy resistance. However, clinical outcomes remain poor, implying we need a better understanding of the relationship between patient tumor heterogeneity and preclinical models. Here, we generated single-cell RNA-seq maps of neuroblastoma cell lines, patient-derived xenograft models (PDX), and a genetically engineered mouse model (GEMM).
View Article and Find Full Text PDFBackground: Disparities in advance care planning (ACP) among older Latinos necessitate targeted interventions to enhance engagement and knowledge in end-of-life care. This study aimed to evaluate the effectiveness of a resource-efficient, culturally tailored educational intervention in improving ACP readiness and knowledge among older Latino adults in the community.
Methods: A quasi-experimental pretest-posttest design was used to assess the impact of the intervention.