Publications by authors named "R Cerff"

The establishment of the mitochondrion is seen as a transformational step in the origin of eukaryotes. With the mitochondrion came bioenergetic freedom to explore novel evolutionary space leading to the eukaryotic radiation known today. The tight integration of the bacterial endosymbiont with its archaeal host was accompanied by a massive endosymbiotic gene transfer resulting in a small mitochondrial genome which is just a ghost of the original incoming bacterial genome.

View Article and Find Full Text PDF

The chloroplast and cytosol of plant cells harbor a number of parallel biochemical reactions germane to the Calvin cycle and glycolysis, respectively. These reactions are catalyzed by nuclear encoded, compartment-specific isoenzymes that differ in their physiochemical properties. The chloroplast cytosol isoenzymes of D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) harbor evidence of major events in the history of life: the origin of the first genes, the bacterial-archaeal split, the origin of eukaryotes, the evolution of protein compartmentation during eukaryote evolution, the origin of plastids, and the secondary endosymbiosis among the algae with complex plastids.

View Article and Find Full Text PDF

Independent evidence from morphological, ultrastructural, biochemical, and molecular data have shown that land plants originated from charophycean green algae. However, the branching order within charophytes is still unresolved, and contradictory phylogenies about, for example,the position of the unicellular green alga Mesostigma viride are difficult to reconcile. A comparison of nuclear-encoded Calvin cycle glyceraldehyde-3-phosphate dehydrogenases (GAPDH) indicates that a crucial duplication of the GapA gene occurred early in land plant evolution.

View Article and Find Full Text PDF

Phosphoribulokinase (PRK) is an essential enzyme of photosynthetic eukaryotes which is active in the plastid-located Calvin cycle and regenerates the substrate for ribulose-bisphosphate carboxylase/oxygenase (Rubisco). Rhodophytes and chlorophytes (red and green algae) recruited their nuclear-encoded PRK from the cyanobacterial ancestor of plastids. The plastids of these organisms can be traced back to a single primary endosymbiosis, whereas, for example, haptophytes, dinoflagellates, and euglenophytes obtained their "complex" plastids through secondary endosymbioses, comprising the engulfment of a unicellular red or green alga by a eukaryotic host cell.

View Article and Find Full Text PDF

The gap3 genes of the Synechococcus and Anabaena cyanobacteria fulfill so far unknown function. A homolog of this gene has recently been found in the nuclear genomes of diplonemids, which are heterotrophic flagellates closely related to kinetoplastids and euglenoids. To understand the function of the gap3 gene in the cyanobacteria, we performed Northern blotting experiments with the gap3 probes under different growth conditions.

View Article and Find Full Text PDF