The evolution and diversification of proteins capable of remodeling domains has been critical for transcriptional reprogramming during cell fate determination in multicellular eukaryotes. Chromatin remodeling proteins of the CHD3 family have been shown to have important and antagonistic impacts on seed development in the model plant, Arabidopsis thaliana, yet the basis of this functional divergence remains unknown. In this study, we demonstrate that genes encoding the CHD3 proteins PICKLE (PKL) and PICKLE-RELATED 2 (PKR2) originated from a duplication event during the diversification of crown Brassicaceae, and that these homologs have undergone distinct evolutionary trajectories since this duplication, with PKR2 fast evolving under positive selection, while PKL is subject to purifying selection.
View Article and Find Full Text PDFParent-of-origin effects arise when a phenotype depends on whether it is inherited maternally or paternally. Parent-of-origin effects can exert a strong influence on F1 seed size in flowering plants, an important agronomic and life-history trait that can contribute to biomass heterosis. Here we investigate the natural variation in the relative contributions of the maternal and paternal genomes to F1 seed size across 71 reciprocal pairs of F1 hybrid diploids and the parental effect on F1 seed size heterosis.
View Article and Find Full Text PDFPlastid ribosomal proteins (PRPs) can play essential roles in plastid ribosome functioning that affect plant function and development. However, the roles of many PRPs remain unknown, including elucidation of which PRPs are essential or display redundancy. Here, we report that the nuclear-encoded PLASTID RIBOSOMAL PROTEIN L5 (PRPL5) is essential for early embryo development in A.
View Article and Find Full Text PDFGenetically identical East African Highland banana (EAHB) clones are epigenetically diverse with heritable epialleles that can contribute to morphological diversity. Heritable epigenetic variation can contribute to agronomic traits in crops and should be considered in germplasm conservation. Despite the genetic uniformity arising from a genetic bottleneck of one ancestral clone, followed by subsequent vegetative propagation, East African Highland bananas (EAHBs) display significant phenotypic diversity potentially arising from somatic mutations, heritable epialleles and/or genotype-by-environment interactions.
View Article and Find Full Text PDF