Nutrient and soil loss from agricultural areas impairs surface water quality globally. In the Great Lakes region, increases in the frequency and magnitude of harmful and nuisance algal blooms in freshwater lakes have been linked to elevated phosphorus (P) losses from agricultural fields, some of which are transported via tile drainage. This study examined whether concentrations and loads of P fractions, total suspended sediments (TSS), nitrate (NO ), and ammonium (NH ) in tile drainage in a clay soil differed between a continuous no-till system combining cover crops and surface broadcast fertilizer (no-till cover crop [NTCC]), and a more conventional tillage system with shallow tillage, fertilizer incorporation and limited use of cover crops (conventional conservation-till, CT).
View Article and Find Full Text PDFAgricultural P losses are a global economic and water quality concern. Much of the current understanding of P dynamics in agricultural systems has been obtained from rainfall-driven runoff, and less is known about cold-season processes. An improved understanding of the magnitude, form, and transport flow paths of P losses from agricultural croplands year round, and the climatic drivers of these processes, is needed to prioritize and evaluate appropriate best management practices (BMPs) to protect soil-water quality in cold regions.
View Article and Find Full Text PDF