Hybrid structures combing silver nanoparticles and few-layer graphene have been synthetized by combining low-energy ion beam synthesis and stencil techniques. A single plane of metallic nanoparticles plays the role of an embedded plasmonic enhancer located in dedicated areas at a controlled nanometer distance from deposited graphene layers. Optical imaging, reflectance and Raman scattering mapping are used to measure the enhancement of electronic and vibrational properties of these layers.
View Article and Find Full Text PDFSurface enhanced Raman scattering (SERS) is generally and widely used to enhance the vibrational fingerprint of molecules located at the vicinity of noble metal nanoparticles. In this work, SERS is originally used to enhance the own vibrational density of states (VDOS) of nude and isolated gold nanoparticles. This offers the opportunity of analyzing finite size effects on the lattice dynamics which remains unattainable with conventional techniques based on neutron or x-ray inelastic scattering.
View Article and Find Full Text PDFThe Discosoma recombinant red fluorescent (DsRed) protein is the latest member of the family of fluorescent proteins. It holds great promise for applications in biotechnology and cell biology. However, before being used for rational engineering, knowledge on the behavior of DsRed and the underlying mechanisms relating its structural stability and adsorption properties on solid surfaces is highly demanded.
View Article and Find Full Text PDFSilver nanoparticles (AgNPs) because of their strong antibacterial activity are widely used in health-care sector and industrial applications. Their huge surface-volume ratio enhances the silver release compared to the bulk material, leading to an increased toxicity for microorganisms sensitive to this element. This work presents an assessment of the toxic effect on algal photosynthesis due to small (size <20nm) AgNPs embedded in silica layers.
View Article and Find Full Text PDFCorrection for 'Enhancing carrier generation in TiO2 by a synergistic effect between plasmon resonance in Ag nanoparticles and optical interference' by Giuseppe Cacciato et al., Nanoscale, 2015, 7, 13468-13476.
View Article and Find Full Text PDF