Publications by authors named "R Caresse Hightower"

miR-486 is a muscle-enriched microRNA, or "myomiR," that has reduced expression correlated with Duchenne muscular dystrophy (DMD). To determine the function of miR-486 in normal and dystrophin-deficient muscles and elucidate miR-486 target transcripts in skeletal muscle, we characterized knockout mice ( KO). KO mice developed disrupted myofiber architecture, decreased myofiber size, decreased locomotor activity, increased cardiac fibrosis, and metabolic defects were exacerbated in KO: (DKO) mice.

View Article and Find Full Text PDF

Introduction: RNA-binding proteins (RBPs) play an important role in skeletal muscle development and disease by regulating RNA splicing. In myotonic dystrophy type 1 (DM1), the RBP MBNL1 (muscleblind-like) is sequestered by toxic CUG repeats, leading to missplicing of MBNL1 targets. Mounting evidence from the literature has implicated other factors in the pathogenesis of DM1.

View Article and Find Full Text PDF

DOCK3 is a member of the DOCK family of guanine nucleotide exchange factors that regulate cell migration, fusion and viability. Previously, we identified a dysregulated miR-486/DOCK3 signaling cascade in dystrophin-deficient muscle, which resulted in the overexpression of DOCK3; however, little is known about the role of DOCK3 in muscle. Here, we characterize the functional role of DOCK3 in normal and dystrophic skeletal muscle.

View Article and Find Full Text PDF

Methionine (Met) cationized with Zn , forming Zn (Met-H) (ACN) where ACN = acetonitrile, Zn (Met-H) , and ZnCl (Met), as well as Cd , forming CdCl (Met), were examined by infrared multiple photon dissociation (IRMPD) action spectroscopy using light generated from the FELIX free electron laser. A series of low-energy conformers for each complex was found using quantum-chemical calculations in order to identify the structures formed experimentally. For all four complexes, spectral comparison indicated that the main binding motif observed is a charge solvated, tridentate structure where the metal center binds to the backbone amino group nitrogen, backbone carbonyl oxygen (where the carboxylic acid is deprotonated in two of the Zn complexes), and side-chain sulfur.

View Article and Find Full Text PDF

Duchenne muscular dystrophy (DMD) is an X-linked muscle wasting disease that is caused by the loss of functional dystrophin protein in cardiac and skeletal muscles. DMD patient muscles become weakened, leading to eventual myofiber breakdown and replacement with fibrotic and adipose tissues. Inflammation drives the pathogenic processes through releasing inflammatory cytokines and other factors that promote skeletal muscle degeneration and contributing to the loss of motor function.

View Article and Find Full Text PDF