The CCR4 protein is specifically required for the increased transcription at the ADH2 locus resulting from mutations in the SPT10 (CRE1) and SPT6 (CRE2) genes and is also required for the expression of ADH2 and other genes under non-fermentative growth conditions. The mechanism by which mutations in CCR4 suppress defects in SPT10 and SPT6 was examined. The SPT10 and SPT6 genes were shown not to control CCR4 mRNA or protein expression nor did SPT10 and SPT6 proteins co-immuneprecipitate with CCR4.
View Article and Find Full Text PDFThe rate of ADH2 transcription increases dramatically when Saccharomyces cerevisiae cells are shifted from glucose to ethanol growth conditions. Since ADH2 expression under glucose growth conditions is strictly dependent on the dosage of the transcriptional activator ADR1, we investigated the possibility that regulation of the rate of ADR1 protein synthesis plays a role in controlling ADR1 activation of ADH2 transcription. We found that the rate of ADR1 protein synthesis increased 10- to 16-fold within 40 to 60 min after glucose depletion, coterminous with initiation of ADH2 transcription.
View Article and Find Full Text PDFA derivative and possible physiological metabolite of disulfiram, diethyldithiocarbamic acid methanethiol mixed disulfide, is shown here for the first time to inactivate the mitochondrial low-Km isozyme of human aldehyde dehydrogenase (EC 1.2.1.
View Article and Find Full Text PDFThe dehydrogenase reaction of the cytoplasmic isozyme (E1) of human aldehyde dehydrogenase (EC 1.2.1.
View Article and Find Full Text PDFThe dehydrogenase activity of the mitochondrial isozyme (E2) of human liver aldehyde dehydrogenase was stimulated about 2-fold by the presence of low concentrations (about 120-140 microM) of Mg2+ in the assay at pH 7.0 using propionaldehyde as substrate. The stimulation was totally reversible by treatment with EDTA.
View Article and Find Full Text PDF