Publications by authors named "R C Tilton"

Nanocarriers (NCs) that can precisely deliver active agents, nutrients and genetic materials into plants will make crop agriculture more resilient to climate change and sustainable. As a research field, nano-agriculture is still developing, with significant scientific and societal barriers to overcome. In this Review, we argue that lessons can be learned from mammalian nanomedicine.

View Article and Find Full Text PDF

When placed in an ionic surfactant gradient, charged colloids will undergo diffusiophoresis at a velocity, = ∇ ln , where is the diffusiophoretic mobility and is the surfactant concentration. The diffusiophoretic mobility depends in part on the charges and diffusivities of the surfactants and their counterions. Since micellization decreases surfactant diffusivity and alters charge distributions in a surfactant solution, of charged colloids in ionic surfactant gradients may differ significantly when surfactant concentrations are above or below the critical micelle concentration (CMC).

View Article and Find Full Text PDF

Hypothesis: Surface tension gradient driven Marangoni flows originating from multiple sources are important to many industrial and medical applications, but the theoretical literature focuses on single surfactant sources. Understanding how two spreading surfactant sources interact allows insights from single source experiments to be applied to multi-source applications. Two key features of multi-source spreading - source translation and source deformation - can be explained by transport modeling of a two-source system.

View Article and Find Full Text PDF

An incomplete understanding of how agrochemical nanocarrier properties affect their uptake and translocation in plants limits their application for promoting sustainable agriculture. Herein, we investigated how the nanocarrier aspect ratio and charge affect uptake and translocation in monocot wheat () and dicot tomato () after foliar application. Leaf uptake and distribution to plant organs were quantified for polymer nanocarriers with the same diameter (∼10 nm) but different aspect ratios (low (L), medium (M), and high (H), 10-300 nm long) and charges (-50 to +15 mV).

View Article and Find Full Text PDF

Hypothesis: A concentration gradient of surfactants in the presence of polymers that non-covalently associate with surfactants will exhibit a continually varying distribution of complexes with different composition, charge, and size. Since diffusiophoresis of colloids suspended in a solute concentration gradient depends on the relaxation of the gradient and on the interactions between solutes and particles, polymer/surfactant complexation will alter the rate of diffusiophoresis driven by surfactant gradients relative to that observed in the same concentration gradient in the absence of polymers.

Experiments: A microfluidic device was used to measure diffusiophoresis of colloids suspended in solutions containing a gradient of sodium dodecylsulfate (SDS) in the presence or absence of a uniform concentration of Pluronic P123 poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) nonionic triblock copolymers.

View Article and Find Full Text PDF