Publications by authors named "R C Smallegange"

Public and animal health authorities face many challenges in surveillance and control of vector-borne diseases. Those challenges are principally due to the multitude of interactions between vertebrate hosts, pathogens, and vectors in continuously changing environments. VectorNet, a joint project of the European Food Safety Authority (EFSA) and the European Centre for Disease Prevention and Control (ECDC) facilitates risk assessments of VBD threats through the collection, mapping and sharing of distribution data for ticks, mosquitoes, sand flies, and biting midges that are vectors of pathogens of importance to animal and/or human health in Europe.

View Article and Find Full Text PDF

Mosquitoes infected with malaria parasites have demonstrated altered behaviour that may increase the probability of parasite transmission. Here, we examine the responses of the olfactory system in Plasmodium falciparum infected Anopheles gambiae, Plasmodium berghei infected Anopheles stephensi, and P. berghei infected An.

View Article and Find Full Text PDF

Malaria parasites () can change the attractiveness of their vertebrate hosts to vectors, leading to a greater number of vector-host contacts and increased transmission. Indeed, naturally -infected children have been shown to attract more mosquitoes than parasite-free children. Here, we demonstrate -induced increases in the attractiveness of skin odor in Kenyan children and reveal quantitative differences in the production of specific odor components in infected vs.

View Article and Find Full Text PDF

Malaria parasites are thought to influence mosquito attraction to human hosts, a phenomenon that may enhance parasite transmission. This is likely mediated by alterations in host odour because of its importance in mosquito host-searching behaviour. Here, we report that the human skin odour profile is affected by malaria infection.

View Article and Find Full Text PDF

Behavioral responses of the malaria mosquito Anopheles coluzzii (An. gambiae sensu stricto molecular 'M form') to an expanded blend of human-derived volatiles were assessed in a dual-port olfactometer. A previously documented attractive three-component blend consisting of NH3, (S)-lactic acid, and tetradecanoic acid served as the basis for expansion.

View Article and Find Full Text PDF