Background: Pancreatic islet β-cell mass expands during pregnancy, but underlying mechanisms are not fully understood. This study examines the impact of pregnancy and cafeteria diet on islet morphology, associated cellular proliferation/apoptosis rates as well as β-cell lineage.
Methods: Non-pregnant and pregnant Ins1;Rosa26-eYFP transgenic mice were maintained on either normal or high-fat cafeteria diet, with pancreatic tissue obtained at 18 days gestation.
Objectives: Dopamine and related receptors are evidenced in pancreatic endocrine tissue, but the impact on islet β-cell stimulus-secretion as well as (patho)physiological role are unclear.
Methods: The present study has evaluated islet cell signalling pathways and biological effects of dopamine, as well as alterations of islet dopamine in rodent models of diabetes of different aetiology.
Key Findings: The dopamine precursor l-DOPA partially impaired glucose tolerance in mice and attenuated glucose-, exendin-4, and alanine-induced insulin secretion.
Several amphibian peptides that were first identified on the basis of their antimicrobial or cytotoxic properties have subsequently shown potential for development into agents for the treatment of patients with Type 2 diabetes. A strategy is presented for the isolation and characterization of such peptides that are present in norepinephrine-stimulated skin secretions from a range of frog species. The methodology involves (1) fractionation of the secretions by reversed-phase HPLC, (2) identification of fractions containing components that stimulate the rate of release of insulin from BRIN-BD11 clonal β-cells without simultaneously stimulating the release of lactate dehydrogenase, (3) identification of active peptides in the fractions in the mass range 1-6 kDa by MALDI-ToF mass spectrometry, (4) purification of the peptides to near homogeneity by further reversed-phase HPLC on various column matrices, and (5) structural characterization by automated Edman degradation.
View Article and Find Full Text PDFAim: Despite its abundance in pancreatic islets of Langerhans and proven antihyperglycemic effects, the impact of the essential amino acid, taurine, on islet β-cell biology has not yet received due consideration, which prompted the current studies exploring the molecular selectivity of taurine import into β-cells and its acute and chronic intracellular interactions.
Methods: The molecular aspects of taurine transport were probed by exposing the clonal pancreatic BRIN BD11 β-cells and primary mouse and human islets to a range of the homologs of the amino acid (assayed at 2-20 mM), using the hormone release and imaging of intracellular signals as surrogate read-outs. Known secretagogues were employed to profile the interaction of taurine with acute and chronic intracellular signals.
Diabetes Obes Metab
January 2024
The development of pancreatic islet endocrine cells is a tightly regulated process leading to the generation of distinct cell types harbouring different hormones in response to small changes in environmental stimuli. Cell differentiation is driven by transcription factors that are also critical for the maintenance of the mature islet cell phenotype. Alteration of the insulin-secreting β-cell transcription factor set by prolonged metabolic stress, associated with the pathogenesis of diabetes, obesity or pregnancy, results in the loss of β-cell identity through de- or transdifferentiation.
View Article and Find Full Text PDF