Histone H2AX plays a key role in DNA damage signalling in the surrounding regions of DNA double-strand breaks (DSBs). In response to DNA damage, H2AX becomes phosphorylated on serine residue 139 (known as γH2AX), resulting in the recruitment of the DNA repair effectors 53BP1 and BRCA1. Here, by studying resistance to poly(ADP-ribose) polymerase (PARP) inhibitors in BRCA1/2-deficient mammary tumours, we identify a function for γH2AX in orchestrating drug-induced replication fork degradation.
View Article and Find Full Text PDFWe theoretically investigate homogeneous crystal nucleation in a solution containing a solute and a volatile solvent. The solvent evaporates from the solution, thereby continuously increasing the concentration of the solute. We view it as an idealized model for the far-out-of-equilibrium conditions present during the liquid-state manufacturing of organic electronic devices.
View Article and Find Full Text PDFBackground: This study aimed to evaluate the histopathological concordance rates between prostate biopsies and radical prostatectomy specimens according to the applied biopsy approach (transrectal or transperineal).
Methods: We studied patients who had been newly diagnosed with clinically significant prostate cancer and who underwent a radical prostatectomy between 2018 and 2022. Patients were included if they underwent a prebiopsy magnetic resonance imaging and if they had not been previously treated for prostate cancer.
BRCA1 and BRCA2 both function in DNA double-strand break repair by homologous recombination (HR). Due to their HR defect, BRCA1/2-deficient cancers are sensitive to poly(ADP-ribose) polymerase inhibitors (PARPis), but they eventually acquire resistance. Preclinical studies yielded several PARPi resistance mechanisms that do not involve BRCA1/2 reactivation, but their relevance in the clinic remains elusive.
View Article and Find Full Text PDF